Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HermiteH






Mathematica Notation

Traditional Notation









Polynomials > HermiteH[n,z] > Series representations > Generalized power series > Expansions at n==infinity





http://functions.wolfram.com/05.01.06.0017.01









  


  










Input Form





HermiteH[n, z] \[Proportional] ((((-1)^Floor[n/2] 2^n)/Sqrt[Pi]) E^(z^2/2) Floor[n/2]! (Cos[Pi ((1 - (-1)^n)/4) - Sqrt[2 n + 1] z] - (z^3/(4 Sqrt[2] Floor[n/2]^(1/2))) (Cos[((-1)^n Pi)/4 + Sqrt[2 n + 1] z] - Sin[((-1)^n Pi)/4 + Sqrt[2 n + 1] z]) + ((32 z^2 (-1 - 2 z^2 + (-1)^n (-1 + z^2)))/(512 z^2 Floor[n/2])) Cos[Pi ((1 - (-1)^n)/4) - Sqrt[2 n + 1] z] + ((z (-5 - 4 z^2 + 2 (-1)^n (2 + z^2)))/(32 Sqrt[2] Floor[n/2]^(3/2))) (Cos[((-1)^n Pi)/4 + Sqrt[2 n + 1] z] - Sin[((-1)^n Pi)/4 + Sqrt[2 n + 1] z]) + \[Ellipsis]))/ Floor[n/2]^((1 + (-1)^n)/4) /; (n -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HermiteH", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], " ", SuperscriptBox["2", "n"]]], SqrtBox["\[Pi]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["z", "2"], "2"]], " ", RowBox[List[RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]], "!"]], " ", SuperscriptBox[RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]], RowBox[List["-", FractionBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"]]], "4"]]]], RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List["\[Pi]", FractionBox[RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"]]], "4"]]], "-", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", "z"]]]], "]"]], "-", RowBox[List[FractionBox[SuperscriptBox["z", "3"], RowBox[List["4", " ", SqrtBox["2"], " ", SuperscriptBox[RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]], RowBox[List["1", "/", "2"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", "\[Pi]"]], "4"], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", "z"]]]], "]"]], "-", RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", "\[Pi]"]], "4"], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", "z"]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["32", " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]]]]]], ")"]]]], RowBox[List["512", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["\[Pi]", FractionBox[RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"]]], "4"]]], "-", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", "z"]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "-", RowBox[List["4", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List["(", RowBox[List["2", "+", SuperscriptBox["z", "2"]]], ")"]]]]]], ")"]]]], RowBox[List["32", " ", SqrtBox["2"], " ", SuperscriptBox[RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]], RowBox[List["3", "/", "2"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", "\[Pi]"]], "4"], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", "z"]]]], "]"]], "-", RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", "\[Pi]"]], "4"], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", "z"]]]], "]"]]]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> H </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mi> n </mi> </msup> </mrow> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> </mrow> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mn> 4 </mn> </mfrac> <mo> - </mo> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> sin </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 512 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 4 </mn> </mfrac> <mtext> </mtext> <mo> - </mo> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> HermiteH </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <factorial /> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> sin </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -5 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sin /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> n </ci> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HermiteH", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], " ", SuperscriptBox["2", "n"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["z", "2"], "2"]], " ", RowBox[List[RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]], "!"]], " ", SuperscriptBox[RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]], RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"]]], ")"]]]], "-", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", "z"]]]], "]"]], "-", FractionBox[RowBox[List[SuperscriptBox["z", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", "\[Pi]"]], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", "z"]]]], "]"]], "-", RowBox[List["Sin", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", "\[Pi]"]], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", "z"]]]], "]"]]]], ")"]]]], RowBox[List["4", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["32", " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]]]]]], ")"]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"]]], ")"]]]], "-", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", "z"]]]], "]"]]]], RowBox[List["512", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "-", RowBox[List["4", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["(", RowBox[List["2", "+", SuperscriptBox["z", "2"]]], ")"]]]]]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", "\[Pi]"]], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", "z"]]]], "]"]], "-", RowBox[List["Sin", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", "\[Pi]"]], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", "z"]]]], "]"]]]], ")"]]]], RowBox[List["32", " ", SqrtBox["2"], " ", SuperscriptBox[RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]], RowBox[List["3", "/", "2"]]]]]], "+", "\[Ellipsis]"]], ")"]]]], SqrtBox["\[Pi]"]], "/;", RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02