Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HermiteH






Mathematica Notation

Traditional Notation









Polynomials > HermiteH[n,z] > Series representations > Generalized power series > Expansions at n==infinity





http://functions.wolfram.com/05.01.06.0021.01









  


  










Input Form





HermiteH[n, z] \[Proportional] (-1)^Floor[n/2] (Floor[n/2] + (-1)^(n - 1)/2)! E^(z^2/2) 2^n z^(n - 2 Floor[n/2]) Sum[(Subscript[A, k] z^(2 k) Hypergeometric0F1Regularized[ (-1)^(n - 1)/2 + k + 1, (-z^2) (Floor[n/2] + ((-1)^(n - 1) + 2)/4)])/ 2^k, {k, 0, Infinity}] /; (n -> Infinity) && Subscript[A, 0] == 1 && Subscript[A, 1] == 0 && Subscript[A, 2] == ((-1)^(n - 1) + 2)/4 && Subscript[A, m] == ((2 m + (-1)^(n - 1) - 2)/(2 m)) Subscript[A, m - 2] - (2 Floor[n/2] + (-1)^(n - 1)/2 + 1) Subscript[A, m - 3] && Element[m, Integers] && m > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HermiteH", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], "2"]]], ")"]], "!"]], SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["z", "2"], "2"]], SuperscriptBox["2", "n"], " ", SuperscriptBox["z", RowBox[List["n", "-", RowBox[List["2", RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["A", "k"], SuperscriptBox["2", RowBox[List["-", "k"]]], " ", SuperscriptBox["z", RowBox[List["2", "k"]]], RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], "2"], "+", "k", "+", "1"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], "+", "2"]], "4"]]], ")"]]]]]], "]"]]]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List[SubscriptBox["A", "0"], "\[Equal]", "1"]], "\[And]", "\[IndentingNewLine]", RowBox[List[SubscriptBox["A", "1"], "\[Equal]", "0"]], "\[And]", "\[IndentingNewLine]", RowBox[List[SubscriptBox["A", "2"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], "+", "2"]], "4"]]], "\[And]", "\[IndentingNewLine]", RowBox[List[SubscriptBox["A", "m"], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["2", "m"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], "-", "2"]], RowBox[List["2", "m"]]], SubscriptBox["A", RowBox[List["m", "-", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], "2"], "+", "1"]], ")"]], SubscriptBox["A", RowBox[List["m", "-", "3"]]]]]]]]], "\[And]", RowBox[List["Element", "[", RowBox[List["m", ",", "Integers"]], "]"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> H </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msub> <mi> A </mi> <mi> k </mi> </msub> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mn> 2 </mn> </mfrac> <mtext> </mtext> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 4 </mn> </mfrac> <mtext> </mtext> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;0&quot;], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, FractionBox[SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;1&quot;]]], &quot;2&quot;], &quot; &quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric0F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;1&quot;]]], &quot;+&quot;, &quot;2&quot;]], &quot;4&quot;], &quot; &quot;, &quot;+&quot;, RowBox[List[&quot;\[LeftFloor]&quot;, FractionBox[&quot;n&quot;, &quot;2&quot;], &quot;\[RightFloor]&quot;]]]], &quot;)&quot;]]]], Hypergeometric0F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1Regularized] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> A </mi> <mn> 0 </mn> </msub> <mo> &#63449; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> A </mi> <mn> 1 </mn> </msub> <mo> &#63449; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> A </mi> <mn> 2 </mn> </msub> <mo> &#63449; </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 4 </mn> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> A </mi> <mi> m </mi> </msub> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> - </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mfrac> <mo> &#8290; </mo> <msub> <mi> A </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mn> 2 </mn> </mfrac> <mtext> </mtext> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> A </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 3 </mn> </mrow> </msub> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> HermiteH </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Subscript </ci> <ci> A </ci> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Hypergeometric0F1Regularized </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> n </ci> <infinity /> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> A </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> -3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HermiteH", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]]]]]], ")"]], "!"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["z", "2"], "2"]], " ", SuperscriptBox["2", "n"], " ", SuperscriptBox["z", RowBox[List["n", "-", RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["A", "k"], " ", SuperscriptBox["2", RowBox[List["-", "k"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "k"]]], " ", RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]]]], "+", "k", "+", "1"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], "+", "2"]], ")"]]]]]], ")"]]]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List[SubscriptBox["A", "0"], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["A", "1"], "\[Equal]", "0"]], "&&", RowBox[List[SubscriptBox["A", "2"], "\[Equal]", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], "+", "2"]], ")"]]]]]], "&&", RowBox[List[SubscriptBox["A", "m"], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], "-", "2"]], ")"]], " ", SubscriptBox["A", RowBox[List["m", "-", "2"]]]]], RowBox[List["2", " ", "m"]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]]]], "+", "1"]], ")"]], " ", SubscriptBox["A", RowBox[List["m", "-", "3"]]]]]]]]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02