|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.01.21.0021.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[(HermiteH[n, z]^2 Log[HermiteH[n, z]^2])/E^z^2,
{z, -Infinity, Infinity}] == 2^n n! Sqrt[Pi] Log[2^(2 n)] -
2 Sum[Subscript[V, n][Subscript[z, k]], {k, 1, n}] /;
HermiteH[n, Subscript[z, k]] == 0 && Subscript[V, n][z] ==
2^n n! Sqrt[Pi] (EulerGamma/2 + Log[2] -
z^2 HypergeometricPFQ[{1, 1}, {3/2, 2}, -z^2] +
(1/2) Sum[(((-1)^k 2^k)/k) Binomial[n, k] Hypergeometric1F1[k, 1/2,
-z^2], {k, 1, n}])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["HermiteH", "[", RowBox[List["n", ",", "z"]], "]"]], "2"], " ", RowBox[List["Log", "[", SuperscriptBox[RowBox[List["HermiteH", "[", RowBox[List["n", ",", "z"]], "]"]], "2"], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", SuperscriptBox["z", "2"]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["2", "n"], " ", RowBox[List["n", "!"]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Log", "[", SuperscriptBox["2", RowBox[List["2", " ", "n"]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], RowBox[List[SubscriptBox["V", "n"], "[", SubscriptBox["z", "k"], "]"]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["HermiteH", "[", RowBox[List["n", ",", SubscriptBox["z", "k"]]], "]"]], "\[Equal]", "0"]], "\[And]", RowBox[List[RowBox[List[SubscriptBox["V", "n"], "[", "z", "]"]], "\[Equal]", RowBox[List[SuperscriptBox["2", "n"], " ", RowBox[List["n", "!"]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[FractionBox["EulerGamma", "2"], "+", RowBox[List["Log", "[", "2", "]"]], "-", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", "2"]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", "k"]]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List["k", ",", FractionBox["1", "2"], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]]]]]]]]]], ")"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> <mi> ∞ </mi> </msubsup> <mrow> <mrow> <msup> <mrow> <msub> <mi> H </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <msub> <mi> H </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msub> <mi> V </mi> <mi> n </mi> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <msub> <mi> H </mi> <mi> n </mi> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <msub> <mi> V </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mn> 2 </mn> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mo> + </mo> <mfrac> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["2", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", SuperscriptBox["z", "2"]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mi> k </mi> </msup> </mrow> <mi> k </mi> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox["k", Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[FractionBox["1", "2"], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], ";", TagBox[RowBox[List["-", SuperscriptBox["z", "2"]]], Hypergeometric1F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <ci> HermiteH </ci> <ci> n </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <apply> <power /> <apply> <ci> HermiteH </ci> <ci> n </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ln /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <apply> <ci> Subscript </ci> <ci> V </ci> <ci> n </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> HermiteH </ci> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <ci> k </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> V </ci> <ci> n </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <eulergamma /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </list> <list> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='integer'> 2 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <ci> Hypergeometric1F1 </ci> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["HermiteH", "[", RowBox[List["n_", ",", "z_"]], "]"]], "2"], " ", RowBox[List["Log", "[", SuperscriptBox[RowBox[List["HermiteH", "[", RowBox[List["n_", ",", "z_"]], "]"]], "2"], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", SuperscriptBox["z_", "2"]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["2", "n"], " ", RowBox[List["n", "!"]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Log", "[", SuperscriptBox["2", RowBox[List["2", " ", "n"]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], RowBox[List[SubscriptBox["V", "n"], "[", SubscriptBox["zz", "k"], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["HermiteH", "[", RowBox[List["n", ",", SubscriptBox["zz", "k"]]], "]"]], "\[Equal]", "0"]], "&&", RowBox[List[RowBox[List[SubscriptBox["V", "n"], "[", "z", "]"]], "\[Equal]", RowBox[List[SuperscriptBox["2", "n"], " ", RowBox[List["n", "!"]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[FractionBox["EulerGamma", "2"], "+", RowBox[List["Log", "[", "2", "]"]], "-", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", "2"]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", "k"]]], ")"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List["k", ",", FractionBox["1", "2"], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]]]], "k"]]]]]]], ")"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|