|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.01.21.0023.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[E^(-(z^2/2) - (1/2) (z - \[Zeta])^2) HermiteH[n, z]
HermiteH[p, z - \[Zeta]], {z, -Infinity, Infinity}] ==
(((Sqrt[Pi] Sqrt[2^n n!] Sqrt[2^p p!] Sqrt[2^(n - p) Gamma[1 + n]
Gamma[1 + p]])/Gamma[1 + n]) (-\[Zeta])^(-n + p)
Hypergeometric1F1Regularized[-n, 1 - n + p, \[Zeta]^2/2])/
E^(\[Zeta]^2/4) /; Element[n, Integers] && n >= 0 &&
Element[p, Integers] && p >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", InterpretationBox[RowBox[List["-", "\[Infinity]"]], DirectedInfinity[-1]], InterpretationBox["\[Infinity]", DirectedInfinity[1]]], RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "2"]]], "-", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "\[Zeta]"]], ")"]], "2"]]]]]], " ", RowBox[List["HermiteH", "[", RowBox[List["n", ",", "z"]], "]"]], " ", RowBox[List["HermiteH", "[", RowBox[List["p", ",", RowBox[List["z", "-", "\[Zeta]"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List[SuperscriptBox["2", "n"], " ", RowBox[List["n", "!"]]]]], " ", SqrtBox[RowBox[List[SuperscriptBox["2", "p"], " ", RowBox[List["p", "!"]]]]], SqrtBox[RowBox[List[SuperscriptBox["2", RowBox[List["n", "-", "p"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "n"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "p"]], "]"]]]]], " "]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "n"]], "]"]]], SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["\[Zeta]", "2"], "4"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[Zeta]"]], ")"]], RowBox[List[RowBox[List["-", "n"]], "+", "p"]]], " ", RowBox[List["Hypergeometric1F1Regularized", "[", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List["1", "-", "n", "+", "p"]], ",", FractionBox[SuperscriptBox["\[Zeta]", "2"], "2"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <semantics> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </annotation-xml> </semantics> <semantics> <mi> ∞ </mi> <annotation-xml encoding='MathML-Content'> <infinity /> </annotation-xml> </semantics> </msubsup> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> ζ </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> H </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> H </mi> <mi> p </mi> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> ζ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mn> 2 </mn> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mn> 2 </mn> <mi> p </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> p </mi> <mo> ! </mo> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> n </mi> <mo> - </mo> <mi> p </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> ζ </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> ζ </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <mtext> </mtext> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <msup> <mi> ζ </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[RowBox[List["-", "n"]], Hypergeometric1F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[RowBox[List["-", "n"]], "+", "p", "+", "1"]], Hypergeometric1F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1Regularized, Rule[Editable, False]], ";", TagBox[FractionBox[SuperscriptBox["\[Zeta]", "2"], "2"], Hypergeometric1F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1Regularized] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> p </mi> <mo> ∈ </mo> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox[TagBox["\[DoubleStruckCapitalN]", Function[Integers]], Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <lowlimit> <apply> <ci> DirectedInfinity </ci> <cn type='integer'> -1 </cn> </apply> </lowlimit> <uplimit> <apply> <ci> DirectedInfinity </ci> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ζ </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> HermiteH </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <ci> HermiteH </ci> <ci> p </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ζ </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> p </ci> </apply> <apply> <factorial /> <ci> p </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> ζ </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ζ </ci> </apply> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <ci> Hypergeometric1F1Regularized </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <power /> <ci> ζ </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <integers /> </apply> <apply> <in /> <ci> p </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["z_", "2"], "2"]]], "-", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z_", "-", "\[Zeta]_"]], ")"]], "2"]]]]]], " ", RowBox[List["HermiteH", "[", RowBox[List["n_", ",", "z_"]], "]"]], " ", RowBox[List["HermiteH", "[", RowBox[List["p_", ",", RowBox[List["z_", "-", "\[Zeta]_"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List[SuperscriptBox["2", "n"], " ", RowBox[List["n", "!"]]]]], " ", SqrtBox[RowBox[List[SuperscriptBox["2", "p"], " ", RowBox[List["p", "!"]]]]], " ", SqrtBox[RowBox[List[SuperscriptBox["2", RowBox[List["n", "-", "p"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "n"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "p"]], "]"]]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["\[Zeta]", "2"], "4"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[Zeta]"]], ")"]], RowBox[List[RowBox[List["-", "n"]], "+", "p"]]], " ", RowBox[List["Hypergeometric1F1Regularized", "[", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List["1", "-", "n", "+", "p"]], ",", FractionBox[SuperscriptBox["\[Zeta]", "2"], "2"]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "n"]], "]"]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|