|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.01.25.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Limit[((-1)^n/(4^n n!)) HermiteH[2 n + 1, z/(2 Sqrt[n])], n -> Infinity] ==
(2/Sqrt[Pi]) Sin[z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List[SuperscriptBox["4", "n"], " ", RowBox[List["n", "!"]]]]], " ", RowBox[List["HermiteH", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ",", FractionBox["z", RowBox[List["2", " ", SqrtBox["n"]]]]]], "]"]]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["2", SqrtBox["\[Pi]"]], RowBox[List["Sin", "[", "z", "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munder> <mi> lim </mi> <mrow> <mi> n </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mrow> <msup> <mn> 4 </mn> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msub> <mi> H </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <msqrt> <mi> π </mi> </msqrt> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <limit /> <bvar> <ci> n </ci> </bvar> <condition> <apply> <tendsto /> <ci> n </ci> <infinity /> </apply> </condition> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HermiteH </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sin /> <ci> z </ci> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Limit", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n_"], " ", RowBox[List["HermiteH", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "n_"]], "+", "1"]], ",", FractionBox["z_", RowBox[List["2", " ", SqrtBox["n_"]]]]]], "]"]]]], RowBox[List[SuperscriptBox["4", "n_"], " ", RowBox[List["n_", "!"]]]]], ",", RowBox[List["n_", "\[Rule]", "\[Infinity]"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", RowBox[List["Sin", "[", "z", "]"]]]], SqrtBox["\[Pi]"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|