| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/05.01.25.0004.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[((1/Sqrt[Sqrt[Pi] 2^m m!]) Exp[-(t^2/2)] HermiteH[m, t]) 
   ((1/Sqrt[Sqrt[Pi] 2^n n!]) Exp[-(t^2/2)] HermiteH[n, t]), 
  {t, -Infinity, Infinity}] == KroneckerDelta[n, m] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[SqrtBox["\[Pi]"], SuperscriptBox["2", "m"], RowBox[List["m", "!"]]]]]], RowBox[List["Exp", "[", RowBox[List["-", FractionBox[SuperscriptBox["t", "2"], "2"]]], "]"]], RowBox[List["HermiteH", "[", RowBox[List["m", ",", "t"]], "]"]]]], ")"]], RowBox[List["(", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[SqrtBox["\[Pi]"], SuperscriptBox["2", "n"], RowBox[List["n", "!"]]]]]], RowBox[List["Exp", "[", RowBox[List["-", FractionBox[SuperscriptBox["t", "2"], "2"]]], "]"]], RowBox[List["HermiteH", "[", RowBox[List["n", ",", "t"]], "]"]]]], ")"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List["KroneckerDelta", "[", RowBox[List["n", ",", "m"]], "]"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msubsup>  <mo> ∫ </mo>  <mrow>  <mo> - </mo>  <mi> ∞ </mi>  </mrow>  <mi> ∞ </mi>  </msubsup>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 1 </mn>  <mtext>   </mtext>  </mrow>  <msqrt>  <mrow>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mi> m </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> m </mi>  <mo> ! </mo>  </mrow>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mi> t </mi>  <mn> 2 </mn>  </msup>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> H </mi>  <mi> m </mi>  </msub>  <mo> ( </mo>  <mi> t </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 1 </mn>  <mtext>   </mtext>  </mrow>  <msqrt>  <mrow>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mi> t </mi>  <mn> 2 </mn>  </msup>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> H </mi>  <mi> n </mi>  </msub>  <mo> ( </mo>  <mi> t </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> t </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> n </mi>  <mo> , </mo>  <mi> m </mi>  </mrow>  </msub>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> t </ci>  </bvar>  <lowlimit>  <apply>  <times />  <cn type='integer'> -1 </cn>  <infinity />  </apply>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <times />  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <ci> m </ci>  </apply>  <apply>  <factorial />  <ci> m </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> t </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> HermiteH </ci>  <ci> m </ci>  <ci> t </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <times />  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  <apply>  <factorial />  <ci> n </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> t </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> HermiteH </ci>  <ci> n </ci>  <ci> t </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> KroneckerDelta </ci>  <ci> n </ci>  <ci> m </ci>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["t_", "2"], "2"]]]], " ", RowBox[List["HermiteH", "[", RowBox[List["m_", ",", "t_"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["t_", "2"], "2"]]]], " ", RowBox[List["HermiteH", "[", RowBox[List["n_", ",", "t_"]], "]"]]]], ")"]]]], RowBox[List[SqrtBox[RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["2", "m_"], " ", RowBox[List["m_", "!"]]]]], " ", SqrtBox[RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["2", "n_"], " ", RowBox[List["n_", "!"]]]]]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["KroneckerDelta", "[", RowBox[List["n", ",", "m"]], "]"]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |