|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.01.25.0004.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[((1/Sqrt[Sqrt[Pi] 2^m m!]) Exp[-(t^2/2)] HermiteH[m, t])
((1/Sqrt[Sqrt[Pi] 2^n n!]) Exp[-(t^2/2)] HermiteH[n, t]),
{t, -Infinity, Infinity}] == KroneckerDelta[n, m]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[SqrtBox["\[Pi]"], SuperscriptBox["2", "m"], RowBox[List["m", "!"]]]]]], RowBox[List["Exp", "[", RowBox[List["-", FractionBox[SuperscriptBox["t", "2"], "2"]]], "]"]], RowBox[List["HermiteH", "[", RowBox[List["m", ",", "t"]], "]"]]]], ")"]], RowBox[List["(", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[SqrtBox["\[Pi]"], SuperscriptBox["2", "n"], RowBox[List["n", "!"]]]]]], RowBox[List["Exp", "[", RowBox[List["-", FractionBox[SuperscriptBox["t", "2"], "2"]]], "]"]], RowBox[List["HermiteH", "[", RowBox[List["n", ",", "t"]], "]"]]]], ")"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List["KroneckerDelta", "[", RowBox[List["n", ",", "m"]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> <mi> ∞ </mi> </msubsup> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mtext> </mtext> </mrow> <msqrt> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mi> m </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> t </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> H </mi> <mi> m </mi> </msub> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mtext> </mtext> </mrow> <msqrt> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> t </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> H </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> n </mi> <mo> , </mo> <mi> m </mi> </mrow> </msub> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <factorial /> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> HermiteH </ci> <ci> m </ci> <ci> t </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> HermiteH </ci> <ci> n </ci> <ci> t </ci> </apply> </apply> </apply> </apply> <apply> <ci> KroneckerDelta </ci> <ci> n </ci> <ci> m </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["t_", "2"], "2"]]]], " ", RowBox[List["HermiteH", "[", RowBox[List["m_", ",", "t_"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["t_", "2"], "2"]]]], " ", RowBox[List["HermiteH", "[", RowBox[List["n_", ",", "t_"]], "]"]]]], ")"]]]], RowBox[List[SqrtBox[RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["2", "m_"], " ", RowBox[List["m_", "!"]]]]], " ", SqrtBox[RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["2", "n_"], " ", RowBox[List["n_", "!"]]]]]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["KroneckerDelta", "[", RowBox[List["n", ",", "m"]], "]"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|