|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.06.03.0010.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JacobiP[n, a, 1/2, z] == Sqrt[2/Pi] ((Gamma[1/2 + a] Gamma[3/2 + n])/
(Sqrt[1 + z] Gamma[3/2 + a + n])) GegenbauerC[1 + 2 n, 1/2 + a,
Sqrt[1 + z]/Sqrt[2]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["n", ",", "a", ",", FractionBox["1", "2"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[SqrtBox[FractionBox["2", "\[Pi]"]], FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "a"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "n"]], "]"]]]]]], RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "a", "+", "n"]], "]"]]]]], " ", RowBox[List["GegenbauerC", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], ",", RowBox[List[FractionBox["1", "2"], "+", "a"]], ",", FractionBox[SqrtBox[RowBox[List["1", "+", "z"]]], SqrtBox["2"]]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mi> P </mi> <mi> n </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <msqrt> <mfrac> <mn> 2 </mn> <mi> π </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mfrac> <mrow> <mtext> </mtext> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mi> C </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> JacobiP </ci> <ci> n </ci> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiP", "[", RowBox[List["n_", ",", "a_", ",", FractionBox["1", "2"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox[FractionBox["2", "\[Pi]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "a"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "n"]], "]"]]]], ")"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], ",", RowBox[List[FractionBox["1", "2"], "+", "a"]], ",", FractionBox[SqrtBox[RowBox[List["1", "+", "z"]]], SqrtBox["2"]]]], "]"]]]], RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "a", "+", "n"]], "]"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|