Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
JacobiP






Mathematica Notation

Traditional Notation









Polynomials > JacobiP[n,a,b,z] > Identities > Recurrence identities > Distant neighbors > With respect to n





http://functions.wolfram.com/05.06.17.0020.01









  


  










Input Form





JacobiP[n, a, b, z] == Subscript[\[ScriptCapitalC], m][n, a, b, z] JacobiP[n + m, a, b, z] - (((m + 1 + n) (m + 1 + a + b + n) (2 m + a + b + 2 n))/ ((m + a + n) (m + b + n) (2 m + 2 + a + b + 2 n))) Subscript[\[ScriptCapitalC], m - 1][n, a, b, z] JacobiP[n + m + 1, a, b, z] /; Subscript[\[ScriptCapitalC], 0][n, a, b, z] == 1 && Subscript[\[ScriptCapitalC], 1][n, a, b, z] == ((3 + a + b + 2 n) (a^2 - b^2 + z (2 + a + b + 2 n) (4 + a + b + 2 n)))/ (2 (1 + a + n) (1 + b + n) (4 + a + b + 2 n)) && Subscript[\[ScriptCapitalC], m][n, a, b, z] == (((2 m + a + b + 2 n + 1) (a^2 - b^2 + z (2 m + a + b + 2 n) (2 m + a + b + 2 n + 2)))/(2 (m + a + n) (m + b + n) (2 m + a + b + 2 n + 2))) Subscript[\[ScriptCapitalC], m - 1][n, a, b, z] - (((m + n) (m + a + b + n) (2 m + a + b + 2 n - 2))/ ((m + a + n - 1) (m + b + n - 1) (2 m + a + b + 2 n))) Subscript[\[ScriptCapitalC], m - 2][n, a, b, z] && Element[m, Integers] && m > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "m"], "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]], RowBox[List["JacobiP", "[", RowBox[List[RowBox[List["n", "+", "m"]], ",", "a", ",", "b", ",", "z"]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", "+", "1", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["m", "+", "1", "+", "a", "+", "b", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", "m"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["m", "+", "a", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["m", "+", "b", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", "m"]], "+", "2", "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]]]]], RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["m", "-", "1"]]], "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]], " ", RowBox[List["JacobiP", "[", RowBox[List[RowBox[List["n", "+", "m", "+", "1"]], ",", "a", ",", "b", ",", "z"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "0"], "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", "1"]], "\[And]", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "1"], "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["2", "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "a", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "b", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]]]]]]], " ", "\[And]", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "m"], "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "m"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", "m"]], "+", "a", "+", "b", "+", RowBox[List["2", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", "m"]], "+", "a", "+", "b", "+", RowBox[List["2", "n"]], "+", "2"]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "+", "a", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["m", "+", "b", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", "m"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]], "+", "2"]], ")"]]]]], " ", RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["m", "-", "1"]]], "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["m", "+", "a", "+", "b", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", "m"]], "+", "a", "+", "b", "+", RowBox[List["2", "n"]], "-", "2"]], ")"]], " "]], RowBox[List[RowBox[List["(", RowBox[List["m", "+", "a", "+", "n", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["m", "+", "b", "+", "n", "-", "1"]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["2", "m"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]], " "]]], RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["m", "-", "2"]]], "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]]]]]]]], "\[And]", RowBox[List["Element", "[", RowBox[List["m", ",", "Integers"]], "]"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> P </mi> <mi> n </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <msub> <mi> &#119966; </mi> <mi> m </mi> </msub> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> P </mi> <mrow> <mi> n </mi> <mo> + </mo> <mi> m </mi> </mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> &#119966; </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> P </mi> <mrow> <mi> n </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <msub> <mi> &#119966; </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <msub> <mi> &#119966; </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <msub> <mi> &#119966; </mi> <mi> m </mi> </msub> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> &#119966; </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> &#119966; </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> JacobiP </ci> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <ci> m </ci> </apply> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <ci> JacobiP </ci> <apply> <plus /> <ci> n </ci> <ci> m </ci> </apply> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> m </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> m </ci> <ci> n </ci> </apply> <apply> <plus /> <ci> b </ci> <ci> m </ci> <ci> n </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <ci> JacobiP </ci> <apply> <plus /> <ci> n </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <cn type='integer'> 0 </cn> </apply> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <cn type='integer'> 1 </cn> </apply> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> b </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <ci> m </ci> </apply> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <ci> m </ci> <ci> n </ci> </apply> <apply> <plus /> <ci> b </ci> <ci> m </ci> <ci> n </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> m </ci> <ci> n </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> m </ci> <ci> n </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> m </ci> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> b </ci> <ci> m </ci> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> -2 </cn> </apply> </apply> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiP", "[", RowBox[List["n_", ",", "a_", ",", "b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "m"], "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]], " ", RowBox[List["JacobiP", "[", RowBox[List[RowBox[List["n", "+", "m"]], ",", "a", ",", "b", ",", "z"]], "]"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["m", "+", "1", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["m", "+", "1", "+", "a", "+", "b", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["m", "-", "1"]]], "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]], " ", RowBox[List["JacobiP", "[", RowBox[List[RowBox[List["n", "+", "m", "+", "1"]], ",", "a", ",", "b", ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["m", "+", "a", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["m", "+", "b", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", "2", "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "0"], "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", "1"]], "&&", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "1"], "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["2", "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "a", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "b", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]]]]]]], "&&", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "m"], "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]], "+", "2"]], ")"]]]]]], ")"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["m", "-", "1"]]], "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "+", "a", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["m", "+", "b", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]], "+", "2"]], ")"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["m", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["m", "+", "a", "+", "b", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]], "-", "2"]], ")"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["m", "-", "2"]]], "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["m", "+", "a", "+", "n", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["m", "+", "b", "+", "n", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]]]]]]]]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02