Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
JacobiP






Mathematica Notation

Traditional Notation









Polynomials > JacobiP[n,a,b,z] > Differentiation > Low-order differentiation > With respect to a





http://functions.wolfram.com/05.06.20.0013.01









  


  










Input Form





D[JacobiP[n, a, b, z], {a, 2}] == (1/n!) Sum[(Pochhammer[-n, k + 2]/(k + 2)!) Sum[(-1)^(j + k + n) (j + 1) (j + 2) (1 + a + b + n)^j Pochhammer[3 + b + k, -k + n - 2] StirlingS1[k + 2, j + 2] ((1 + z)/2)^(k + 2), {j, 0, k}], {k, 0, n - 2}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["a", ",", "2"]], "}"]]], RowBox[List["JacobiP", "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["1", " "]], RowBox[List["n", "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "2"]]], RowBox[List[FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List["k", "+", "2"]]]], "]"]], RowBox[List[RowBox[List["(", RowBox[List["k", "+", "2"]], ")"]], "!"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "k", "+", "n"]]], " ", RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]], RowBox[List["(", RowBox[List["j", "+", "2"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "a", "+", "b", "+", "n"]], ")"]], "j"], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["3", "+", "b", "+", "k"]], ",", RowBox[List[RowBox[List["-", "k"]], "+", "n", "-", "2"]]]], "]"]], " ", RowBox[List["StirlingS1", "[", RowBox[List[RowBox[List["k", "+", "2"]], ",", RowBox[List["j", "+", "2"]]]], "]"]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "+", "z"]], "2"], ")"]], RowBox[List["k", "+", "2"]]]]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 2 </mn> </msup> <mrow> <msubsup> <mi> P </mi> <mi> n </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;n&quot;]], &quot;)&quot;]], RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;2&quot;]]], Pochhammer] </annotation> </semantics> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;k&quot;, &quot;+&quot;, &quot;3&quot;]], &quot;)&quot;]], RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;k&quot;, &quot;-&quot;, &quot;2&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, StirlingS1] </annotation> </semantics> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> a </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> JacobiP </ci> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> j </ci> <ci> k </ci> <ci> n </ci> </apply> </apply> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <ci> j </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> b </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <ci> StirlingS1 </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "2"]], "}"]]]]], RowBox[List["JacobiP", "[", RowBox[List["n_", ",", "a_", ",", "b_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "2"]]], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List["k", "+", "2"]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "k", "+", "n"]]], " ", RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["j", "+", "2"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "a", "+", "b", "+", "n"]], ")"]], "j"], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["3", "+", "b", "+", "k"]], ",", RowBox[List[RowBox[List["-", "k"]], "+", "n", "-", "2"]]]], "]"]], " ", RowBox[List["StirlingS1", "[", RowBox[List[RowBox[List["k", "+", "2"]], ",", RowBox[List["j", "+", "2"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "+", "z"]], "2"], ")"]], RowBox[List["k", "+", "2"]]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["k", "+", "2"]], ")"]], "!"]]]]], RowBox[List["n", "!"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02