Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
JacobiP






Mathematica Notation

Traditional Notation









Polynomials > JacobiP[n,a,b,z] > Differentiation > Fractional integro-differentiation > With respect to z





http://functions.wolfram.com/05.06.20.0009.01









  


  










Input Form





D[JacobiP[n, a, b, z], {z, \[Alpha]}] == ((Gamma[a + n + 1]/Gamma[n + 1]) HypergeometricPFQRegularized[ {{-n, a + b + n + 1}, {1}, {}}, {{a + 1}, {1 - \[Alpha]}, {}}, -(z/2), 1/2])/z^\[Alpha]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["JacobiP", "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], FractionBox[RowBox[List["Gamma", "[", RowBox[List["a", "+", "n", "+", "1"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["n", "+", "1"]], "]"]]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List["a", "+", "b", "+", "n", "+", "1"]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["a", "+", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", "\[Alpha]"]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["-", FractionBox["z", "2"]]], ",", FractionBox["1", "2"]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <msubsup> <mi> P </mi> <mi> n </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 0 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ; </mo> <mo> ; </mo> </mrow> </mtd> </mtr> </mtable> <mo> - </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> &#8706; </ms> <ms> &#945; </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> P </ms> <ms> n </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> a </ms> <ms> , </ms> <ms> b </ms> </list> </apply> <ms> ) </ms> </list> </apply> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#8706; </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> &#945; </ms> </apply> </list> </apply> </apply> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> a </ms> <ms> + </ms> <ms> n </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> &#945; </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <apply> <ci> OverscriptBox </ci> <ms> F </ms> <ms> ~ </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> 1 </ms> <ms> 0 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> 1 </ms> <ms> 0 </ms> </list> </apply> </apply> <ms> [ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> GridBox </ci> <list> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> n </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> a </ms> <ms> + </ms> <ms> b </ms> <ms> + </ms> <ms> n </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ; </ms> <ms> 1 </ms> <ms> ; </ms> <ms> ; </ms> </list> </apply> </list> </apply> </apply> </list> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> a </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ; </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> &#945; </ms> </list> </apply> <ms> ; </ms> <ms> ; </ms> </list> </apply> </list> </list> </apply> <ms> - </ms> <apply> <ci> FractionBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> , </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> <ms> ] </ms> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["JacobiP", "[", RowBox[List["n_", ",", "a_", ",", "b_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "n", "+", "1"]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List["a", "+", "b", "+", "n", "+", "1"]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["a", "+", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", "\[Alpha]"]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["-", FractionBox["z", "2"]]], ",", FractionBox["1", "2"]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["n", "+", "1"]], "]"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29