
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/05.02.06.0020.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
LaguerreL[n, z] \[Proportional] (E^(z/2)/(Sqrt[Pi] z^(1/4) n^(1/4)))
(Cos[Pi/4 - 2 Sqrt[(n + 1/2) z]] - (1/(16 Sqrt[z] Sqrt[n]))
Sin[Pi/4 - 2 Sqrt[(n + 1/2) z]] - ((9 + 64 z + 64 z^2)/(512 z n))
Cos[Pi/4 - 2 Sqrt[(n + 1/2) z]] - (1/(8192 z^(3/2) n^(3/2)))
(1024 (1 + 2 n) z^3 Cos[Pi/4 + 2 Sqrt[(n + 1/2) z]] +
3 (-25 + 64 z (-1 + 5 z)) Sin[Pi/4 - 2 Sqrt[(n + 1/2) z]]) +
\[Ellipsis]) /; (n -> Infinity)
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox["n", RowBox[List["1", "/", "4"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]], "-", RowBox[List[FractionBox["1", RowBox[List["16", " ", SqrtBox["z"], SqrtBox["n"], " "]]], RowBox[List["Sin", "[", RowBox[List[FractionBox["\[Pi]", "4"], "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["9", "+", RowBox[List["64", " ", "z"]], "+", RowBox[List["64", " ", SuperscriptBox["z", "2"]]]]], RowBox[List["512", " ", "z", " ", "n"]]], RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["8192", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], SuperscriptBox["n", RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["1024", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", SuperscriptBox["z", "3"], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "25"]], "+", RowBox[List["64", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["5", " ", "z"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["\[Pi]", "4"], "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]]]]]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> L </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mfrac> <msup> <mi> ⅇ </mi> <mrow> <mi> z </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mroot> <mi> n </mi> <mn> 4 </mn> </mroot> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> π </mi> <mn> 4 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> π </mi> <mn> 4 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> π </mi> <mn> 4 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 512 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mn> 1024 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 25 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> π </mi> <mn> 4 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 8192 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> n </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> LaguerreL </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <sin /> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 64 </cn> <ci> z </ci> </apply> <cn type='integer'> 9 </cn> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 512 </cn> <ci> z </ci> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1024 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 64 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -25 </cn> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8192 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> n </ci> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LaguerreL", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]], "-", FractionBox[RowBox[List["Sin", "[", RowBox[List[FractionBox["\[Pi]", "4"], "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]], RowBox[List["16", " ", SqrtBox["z"], " ", SqrtBox["n"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["9", "+", RowBox[List["64", " ", "z"]], "+", RowBox[List["64", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]]]], RowBox[List["512", " ", "z", " ", "n"]]], "-", FractionBox[RowBox[List[RowBox[List["1024", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", SuperscriptBox["z", "3"], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "25"]], "+", RowBox[List["64", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["5", " ", "z"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["\[Pi]", "4"], "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]]]]]], RowBox[List["8192", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["n", RowBox[List["3", "/", "2"]]]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["n", RowBox[List["1", "/", "4"]]]]]], "/;", RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|