| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/05.02.06.0021.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | LaguerreL[n, z] \[Proportional] (E^(z/2)/(z^(1/4) n^(1/4) Sqrt[Pi])) 
   (Cos[Pi/4 - 2 Sqrt[(n + 1/2) z]] + 
    Sum[(Sum[(((-1)^(j + r + s) 2^(2 j - 2 k + s) z^(-j + k - 2 r - s))/
          (s! Pochhammer[1/2, r])) Subscript[A, 2 (k - j - r - s)] 
         Cos[Pi (-(1/4) + j - k + r + s) + 2 Sqrt[(n + 1/2) z]] BernoulliB[j] 
         KroneckerDelta[j] Pochhammer[1/4 - j + k - s, s] 
         Pochhammer[1/4 - j + k - r - s, r] Pochhammer[3/4 - j + k - r - s, 
          r] Pochhammer[1/4 + j - k + r + s, r] Pochhammer[
          3/4 + j - k + r + s, r], {j, 0, k}, {r, 0, k - j}, 
        {s, 0, k - j - r}] - (1/z) 2 
        Sum[(((-1)^(j + r + s) 2^(2 j - 2 k + s) z^(k - j - 2 r - s))/
           (s! Pochhammer[3/2, r])) Subscript[A, 2 (k - j - r - s) - 1] 
          BernoulliB[j] KroneckerDelta[j] Pochhammer[1/4 - j + k - s, s] 
          Pochhammer[1/4 - j + k - r - s, r] Pochhammer[3/4 - j + k - r - s, 
           r] Pochhammer[1/4 + j - k + r + s, 1 + r] Pochhammer[
           3/4 + j - k + r + s, 1 + r] Sin[Pi (1/4 + j - k + r + s) + 
            2 Sqrt[(n + 1/2) z]], {j, 0, k - 1}, {r, 0, k - j - 1}, 
         {s, 0, k - j - r - 1}])/n^k, {k, 1, Infinity}] + 
    (Sqrt[z]/(2 Sqrt[n])) Sum[(((-1)^(j + r + s) 2^(2 j - 2 k + s) 
         z^(k - j - 2 r - s))/(n^k (s! Pochhammer[3/2, r]))) BernoulliB[j] 
       KroneckerDelta[j] Pochhammer[3/4 - j + k - s, s] 
       Pochhammer[3/4 - j + k - r - s, r] Pochhammer[5/4 - j + k - r - s, r] 
       Pochhammer[-(1/4) + j - k + r + s, r] Pochhammer[1/4 + j - k + r + s, 
        r] ((1 + 2 r) Subscript[A, 2 (k - j - r - s) + 1] 
         Cos[Pi (-(3/4) + j - k + r + s) + 2 Sqrt[(n + 1/2) z]] - 
        (((-1 + 4 j - 4 k + 8 r + 4 s) (1 + 4 j - 4 k + 8 r + 4 s))/(8 z)) 
         Subscript[A, 2 (k - j - r - s)] Sin[Pi (-(1/4) + j - k + r + s) + 
           2 Sqrt[(n + 1/2) z]]), {k, 0, Infinity}, {j, 0, k}, {r, 0, k - j}, 
      {s, 0, k - j - r}]) /; (n -> Infinity) && Subscript[A, 0] == 1 && 
  Subscript[A, 1] == 0 && Subscript[A, 2] == 1/2 && 
  Subscript[A, m] == ((m - 1)/m) Subscript[A, m - 2] - 
    (2 n + 1) Subscript[A, m - 3] && Element[m, Integers] && m > 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["-", FractionBox["1", "4"]]]], SuperscriptBox["n", RowBox[List["-", FractionBox["1", "4"]]]]]], SqrtBox["\[Pi]"]], RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[SuperscriptBox["n", RowBox[List["-", "k"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], RowBox[List["k", "-", "j"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["k", "-", "j", "-", "r"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "r", "+", "s"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "j"]], "-", RowBox[List["2", " ", "k"]], "+", "s"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "k", "-", RowBox[List["2", " ", "r"]], "-", "s"]]], " "]], RowBox[List[" ", RowBox[List[RowBox[List["s", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "r"]], "]"]]]]]]], SubscriptBox["A", RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s"]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]], "  ", RowBox[List["BernoulliB", "[", "j", "]"]], " ", RowBox[List["KroneckerDelta", "[", "j", "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "s"]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "r", "-", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "r", "-", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "+", "j", "-", "k", "+", "r", "+", "s"]], ",", "r"]], "]"]]]]]]]]]], "-", RowBox[List[FractionBox["1", "z"], "2", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["k", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], RowBox[List["k", "-", "j", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["k", "-", "j", "-", "r", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "r", "+", "s"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "j"]], "-", RowBox[List["2", " ", "k"]], "+", "s"]]], " ", SuperscriptBox["z", RowBox[List["k", "-", "j", "-", RowBox[List["2", " ", "r"]], "-", "s"]]], " "]], RowBox[List[RowBox[List["s", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "r"]], "]"]]]]], SubscriptBox["A", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]], "-", "1"]]], " ", RowBox[List["BernoulliB", "[", "j", "]"]], " ", RowBox[List["KroneckerDelta", "[", "j", "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "s"]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "r", "-", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "r", "-", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s"]], ",", RowBox[List["1", "+", "r"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "+", "j", "-", "k", "+", "r", "+", "s"]], ",", RowBox[List["1", "+", "r"]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s"]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]]]]]]]]]]]]]], ")"]]]]]], "+", RowBox[List[FractionBox[SqrtBox["z"], RowBox[List["2", " ", SqrtBox["n"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], RowBox[List["k", "-", "j"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["k", "-", "j", "-", "r"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "r", "+", "s"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "j"]], "-", RowBox[List["2", " ", "k"]], "+", "s"]]], " ", SuperscriptBox["n", RowBox[List["-", "k"]]], " ", SuperscriptBox["z", RowBox[List["k", "-", "j", "-", RowBox[List["2", " ", "r"]], "-", "s"]]], " "]], RowBox[List[RowBox[List["s", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "r"]], "]"]]]]], " ", RowBox[List["BernoulliB", "[", "j", "]"]], " ", RowBox[List["KroneckerDelta", "[", "j", "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "s"]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "r", "-", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["5", "4"], "-", "j", "+", "k", "-", "r", "-", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s"]], ",", "r"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "r"]]]], ")"]], " ", SubscriptBox["A", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]], "+", "1"]]], "  ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["3", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s"]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", "j"]], "-", RowBox[List["4", " ", "k"]], "+", RowBox[List["8", " ", "r"]], "+", RowBox[List["4", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", "j"]], "-", RowBox[List["4", " ", "k"]], "+", RowBox[List["8", " ", "r"]], "+", RowBox[List["4", " ", "s"]]]], ")"]]]], RowBox[List["8", " ", "z"]]], " ", SubscriptBox["A", RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s"]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List[SubscriptBox["A", "0"], "\[Equal]", "1"]], "\[And]", "\[IndentingNewLine]", RowBox[List[SubscriptBox["A", "1"], "\[Equal]", "0"]], "\[And]", "\[IndentingNewLine]", RowBox[List[SubscriptBox["A", "2"], "\[Equal]", FractionBox["1", "2"]]], "\[And]", "\[IndentingNewLine]", RowBox[List[SubscriptBox["A", "m"], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["m", "-", "1"]], "m"], SubscriptBox["A", RowBox[List["m", "-", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "1"]], ")"]], SubscriptBox["A", RowBox[List["m", "-", "3"]]]]]]]]], "\[And]", RowBox[List["Element", "[", RowBox[List["m", ",", "Integers"]], "]"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msub>  <mi> L </mi>  <mi> n </mi>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ∝ </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> z </mi>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> n </mi>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </msup>  </mrow>  <msqrt>  <mi> π </mi>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mi> π </mi>  <mn> 4 </mn>  </mfrac>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <msup>  <mi> n </mi>  <mrow>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> r </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> r </mi>  </mrow>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mi> r </mi>  <mo> + </mo>  <mi> s </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> s </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  </mrow>  <mo> - </mo>  <mi> s </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mi> s </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> r </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "r"], Pochhammer] </annotation>  </semantics>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msub>  <mi> A </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> r </mi>  <mo> - </mo>  <mi> s </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msub>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mi> r </mi>  <mo> + </mo>  <mi> s </mi>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> B </mi>  <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation>  </semantics>  <mi> j </mi>  </msub>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mi> j </mi>  </msub>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> s </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "s", "+", FractionBox["1", "4"]]], ")"]], "s"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> r </mi>  <mo> - </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> r </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s", "+", FractionBox["1", "4"]]], ")"]], "r"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> r </mi>  <mo> - </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> r </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s", "+", FractionBox["3", "4"]]], ")"]], "r"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mi> r </mi>  <mo> + </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> r </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "-", "k", "+", "r", "+", "s", "+", FractionBox["1", "4"]]], ")"]], "r"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mi> r </mi>  <mo> + </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> r </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "-", "k", "+", "r", "+", "s", "+", FractionBox["3", "4"]]], ")"]], "r"], Pochhammer] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 2 </mn>  <mi> z </mi>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> r </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> r </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mi> r </mi>  <mo> + </mo>  <mi> s </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> s </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  </mrow>  <mo> - </mo>  <mi> s </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mi> s </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> r </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "r"], Pochhammer] </annotation>  </semantics>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msub>  <mi> A </mi>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> r </mi>  <mo> - </mo>  <mi> s </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> B </mi>  <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation>  </semantics>  <mi> j </mi>  </msub>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mi> j </mi>  </msub>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> s </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "s", "+", FractionBox["1", "4"]]], ")"]], "s"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> r </mi>  <mo> - </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> r </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s", "+", FractionBox["1", "4"]]], ")"]], "r"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> r </mi>  <mo> - </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> r </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s", "+", FractionBox["3", "4"]]], ")"]], "r"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mi> r </mi>  <mo> + </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> r </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "-", "k", "+", "r", "+", "s", "+", FractionBox["1", "4"]]], ")"]], RowBox[List["r", "+", "1"]]], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mi> r </mi>  <mo> + </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> r </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "-", "k", "+", "r", "+", "s", "+", FractionBox["3", "4"]]], ")"]], RowBox[List["r", "+", "1"]]], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mi> r </mi>  <mo> + </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mtext>   </mtext>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> n </mi>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> r </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> r </mi>  </mrow>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mi> r </mi>  <mo> + </mo>  <mi> s </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> s </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> n </mi>  <mrow>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  </mrow>  <mo> - </mo>  <mi> s </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mi> s </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> r </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "r"], Pochhammer] </annotation>  </semantics>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> B </mi>  <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation>  </semantics>  <mi> j </mi>  </msub>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mi> j </mi>  </msub>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> s </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "s", "+", FractionBox["3", "4"]]], ")"]], "s"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> r </mi>  <mo> - </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> r </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s", "+", FractionBox["3", "4"]]], ")"]], "r"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> r </mi>  <mo> - </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 5 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> r </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s", "+", FractionBox["5", "4"]]], ")"]], "r"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mi> r </mi>  <mo> + </mo>  <mi> s </mi>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> r </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "-", "k", "+", "r", "+", "s", "-", FractionBox["1", "4"]]], ")"]], "r"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mi> r </mi>  <mo> + </mo>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> r </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "-", "k", "+", "r", "+", "s", "+", FractionBox["1", "4"]]], ")"]], "r"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <mi> A </mi>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> r </mi>  <mo> - </mo>  <mi> s </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mi> r </mi>  <mo> + </mo>  <mi> s </mi>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> r </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msub>  <mi> A </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mi> r </mi>  <mo> - </mo>  <mi> s </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msub>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mi> r </mi>  <mo> + </mo>  <mi> s </mi>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mi> ∞ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> A </mi>  <mn> 0 </mn>  </msub>  <mo>  </mo>  <mn> 1 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> A </mi>  <mn> 1 </mn>  </msub>  <mo>  </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> A </mi>  <mn> 2 </mn>  </msub>  <mo>  </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> A </mi>  <mi> m </mi>  </msub>  <mo>  </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> m </mi>  </mfrac>  <mo> ⁢ </mo>  <msub>  <mi> A </mi>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </msub>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <mi> A </mi>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 3 </mn>  </mrow>  </msub>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> m </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <ci> Proportional </ci>  <apply>  <ci> LaguerreL </ci>  <ci> n </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <power />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> n </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <power />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <sum />  <bvar>  <ci> s </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  </apply>  </uplimit>  <apply>  <sum />  <bvar>  <ci> r </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </uplimit>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> j </ci>  <ci> r </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  <ci> s </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> r </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <ci> s </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  <ci> r </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> A </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <pi />  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> r </ci>  <ci> s </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> n </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> BernoulliB </ci>  <ci> j </ci>  </apply>  <apply>  <ci> KroneckerDelta </ci>  <ci> j </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <ci> s </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <ci> r </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <ci> r </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> r </ci>  <ci> s </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <ci> r </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> r </ci>  <ci> s </ci>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <ci> r </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> s </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <sum />  <bvar>  <ci> r </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> j </ci>  <ci> r </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  <ci> s </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> r </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <ci> s </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  <ci> r </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> A </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> BernoulliB </ci>  <ci> j </ci>  </apply>  <apply>  <ci> KroneckerDelta </ci>  <ci> j </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <ci> s </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <ci> r </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <ci> r </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> r </ci>  <ci> s </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <plus />  <ci> r </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> r </ci>  <ci> s </ci>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <apply>  <plus />  <ci> r </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <sin />  <apply>  <plus />  <apply>  <times />  <pi />  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> r </ci>  <ci> s </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> n </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> n </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> s </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  </apply>  </uplimit>  <apply>  <sum />  <bvar>  <ci> r </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </uplimit>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> j </ci>  <ci> r </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  <ci> s </ci>  </apply>  </apply>  <apply>  <power />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> r </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <ci> s </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  <ci> r </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> BernoulliB </ci>  <ci> j </ci>  </apply>  <apply>  <ci> KroneckerDelta </ci>  <ci> j </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <ci> s </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <ci> r </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  <cn type='rational'> 5 <sep /> 4 </cn>  </apply>  <ci> r </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> r </ci>  <ci> s </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <ci> r </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> r </ci>  <ci> s </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <ci> r </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> r </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> A </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <pi />  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> r </ci>  <ci> s </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> n </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> r </ci>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> s </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> r </ci>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> s </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> A </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> r </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <sin />  <apply>  <plus />  <apply>  <times />  <pi />  <apply>  <plus />  <ci> j </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> r </ci>  <ci> s </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> n </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <ci> Rule </ci>  <ci> n </ci>  <infinity />  </apply>  <apply>  <eq />  <apply>  <ci> Subscript </ci>  <ci> A </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <eq />  <apply>  <ci> Subscript </ci>  <ci> A </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <eq />  <apply>  <ci> Subscript </ci>  <ci> A </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <eq />  <apply>  <ci> Subscript </ci>  <ci> A </ci>  <ci> m </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> A </ci>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> A </ci>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -3 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> m </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LaguerreL", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["-", FractionBox["1", "4"]]]], " ", SuperscriptBox["n", RowBox[List["-", FractionBox["1", "4"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[SuperscriptBox["n", RowBox[List["-", "k"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], RowBox[List["k", "-", "j"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["k", "-", "j", "-", "r"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "r", "+", "s"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "j"]], "-", RowBox[List["2", " ", "k"]], "+", "s"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "k", "-", RowBox[List["2", " ", "r"]], "-", "s"]]]]], ")"]], " ", SubscriptBox["A", RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s"]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]], " ", RowBox[List["BernoulliB", "[", "j", "]"]], " ", RowBox[List["KroneckerDelta", "[", "j", "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "s"]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "r", "-", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "r", "-", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "+", "j", "-", "k", "+", "r", "+", "s"]], ",", "r"]], "]"]]]], RowBox[List[RowBox[List["s", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "r"]], "]"]]]]]]]]]]], "-", FractionBox[RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["k", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], RowBox[List["k", "-", "j", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["k", "-", "j", "-", "r", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "r", "+", "s"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "j"]], "-", RowBox[List["2", " ", "k"]], "+", "s"]]], " ", SuperscriptBox["z", RowBox[List["k", "-", "j", "-", RowBox[List["2", " ", "r"]], "-", "s"]]]]], ")"]], " ", SubscriptBox["A", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]], "-", "1"]]], " ", RowBox[List["BernoulliB", "[", "j", "]"]], " ", RowBox[List["KroneckerDelta", "[", "j", "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "s"]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "r", "-", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "r", "-", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s"]], ",", RowBox[List["1", "+", "r"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "+", "j", "-", "k", "+", "r", "+", "s"]], ",", RowBox[List["1", "+", "r"]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s"]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["s", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "r"]], "]"]]]]]]]]]]]]], "z"]]], ")"]]]]]], "+", FractionBox[RowBox[List[SqrtBox["z"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], RowBox[List["k", "-", "j"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["k", "-", "j", "-", "r"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "r", "+", "s"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "j"]], "-", RowBox[List["2", " ", "k"]], "+", "s"]]], " ", SuperscriptBox["n", RowBox[List["-", "k"]]], " ", SuperscriptBox["z", RowBox[List["k", "-", "j", "-", RowBox[List["2", " ", "r"]], "-", "s"]]]]], ")"]], " ", RowBox[List["BernoulliB", "[", "j", "]"]], " ", RowBox[List["KroneckerDelta", "[", "j", "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "s"]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "r", "-", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["5", "4"], "-", "j", "+", "k", "-", "r", "-", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s"]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s"]], ",", "r"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "r"]]]], ")"]], " ", SubscriptBox["A", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]], "+", "1"]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["3", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s"]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", "j"]], "-", RowBox[List["4", " ", "k"]], "+", RowBox[List["8", " ", "r"]], "+", RowBox[List["4", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", "j"]], "-", RowBox[List["4", " ", "k"]], "+", RowBox[List["8", " ", "r"]], "+", RowBox[List["4", " ", "s"]]]], ")"]]]], ")"]], " ", SubscriptBox["A", RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s"]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", FractionBox["1", "2"]]], ")"]], " ", "z"]]]]]]], "]"]]]], RowBox[List["8", " ", "z"]]]]], ")"]]]], RowBox[List[RowBox[List["s", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "r"]], "]"]]]]]]]]]]]]]]], RowBox[List["2", " ", SqrtBox["n"]]]]]], ")"]]]], SqrtBox["\[Pi]"]], "/;", RowBox[List[RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List[SubscriptBox["A", "0"], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["A", "1"], "\[Equal]", "0"]], "&&", RowBox[List[SubscriptBox["A", "2"], "\[Equal]", FractionBox["1", "2"]]], "&&", RowBox[List[SubscriptBox["A", "m"], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SubscriptBox["A", RowBox[List["m", "-", "2"]]]]], "m"], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], " ", SubscriptBox["A", RowBox[List["m", "-", "3"]]]]]]]]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |