|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.08.06.0030.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LaguerreL[n, \[Lambda], z] \[Proportional]
((E^(z/2) n^((2 \[Lambda] - 1)/4))/(z^((2 \[Lambda] + 1)/4) Sqrt[Pi]))
(Cos[(-Pi) ((2 \[Lambda] + 1)/4) + 2 Sqrt[z (n + (\[Lambda] + 1)/2)]] +
Sum[(Sum[(((-1)^(j + r + s) 2^(2 j - 2 k + s) z^(-j + k - 2 r - s)
(1 + \[Lambda])^s)/(j! s! Pochhammer[1/2, r]))
Subscript[A, 2 (k - j - r - s)]
Cos[Pi (-(1/4) + j - k + r + s - \[Lambda]/2) +
2 Sqrt[z (n + (1 + \[Lambda])/2)]] NorlundB[j, 1 + \[Lambda],
1 + \[Lambda]] Pochhammer[1/4 + j - k + r + s - \[Lambda]/2, r]
Pochhammer[3/4 + j - k + r + s - \[Lambda]/2, r]
Pochhammer[1/4 - j + k - s + \[Lambda]/2, s]
Pochhammer[1/4 - j + k - r - s + \[Lambda]/2, r]
Pochhammer[3/4 - j + k - r - s + \[Lambda]/2, r]
Pochhammer[-\[Lambda], j], {j, 0, k}, {r, 0, k - j},
{s, 0, k - j - r}] - (2/z) Sum[(((-1)^(j + r + s) 2^(2 j - 2 k + s)
z^(-j + k - 2 r - s) (1 + \[Lambda])^s)/
(j! s! Pochhammer[3/2, r])) Subscript[A, 2 (k - j - r - s) - 1]
Sin[Pi (1/4 + j - k + r + s - \[Lambda]/2) +
2 Sqrt[z (n + (1 + \[Lambda])/2)]] NorlundB[j, 1 + \[Lambda],
1 + \[Lambda]] Pochhammer[1/4 + j - k + r + s - \[Lambda]/2,
1 + r] Pochhammer[3/4 + j - k + r + s - \[Lambda]/2, 1 + r]
Pochhammer[1/4 - j + k - s + \[Lambda]/2, s]
Pochhammer[1/4 - j + k - r - s + \[Lambda]/2, r]
Pochhammer[3/4 - j + k - r - s + \[Lambda]/2, r]
Pochhammer[-\[Lambda], j], {j, 0, k - 1}, {r, 0, k - j - 1},
{s, 0, k - j - r - 1}])/n^k, {k, 1, Infinity}] +
(Sqrt[z]/(2 Sqrt[n])) Sum[(((-1)^(j + r + s) 2^(2 j - 2 k + s)
z^(-j + k - 2 r - s) (1 + \[Lambda])^s)/
(n^k (j! s! Pochhammer[3/2, r]))) NorlundB[j, 1 + \[Lambda],
1 + \[Lambda]] Pochhammer[-(1/4) + j - k + r + s - \[Lambda]/2, r]
Pochhammer[1/4 + j - k + r + s - \[Lambda]/2, r]
Pochhammer[3/4 - j + k - s + \[Lambda]/2, s]
Pochhammer[3/4 - j + k - r - s + \[Lambda]/2, r]
Pochhammer[5/4 - j + k - r - s + \[Lambda]/2, r]
Pochhammer[-\[Lambda], j] ((1 + 2 r) Subscript[A, 2 (k - j - r - s) +
1] Cos[Pi (-(3/4) + j - k + r + s - \[Lambda]/2) +
2 Sqrt[z (n + (1 + \[Lambda])/2)]] -
(((-1 + 4 j - 4 k + 8 r + 4 s - 2 \[Lambda]) (1 + 4 j - 4 k + 8 r +
4 s - 2 \[Lambda]))/(8 z)) Subscript[A, 2 (k - j - r - s)]
Sin[Pi (-(1/4) + j - k + r + s - \[Lambda]/2) +
2 Sqrt[z (n + (1 + \[Lambda])/2)]]), {k, 0, Infinity}, {j, 0, k},
{r, 0, k - j}, {s, 0, k - j - r}]) /;
(n -> Infinity) && Subscript[A, 0] == 1 && Subscript[A, 1] == 0 &&
Subscript[A, 2] == (\[Lambda] + 1)/2 && Subscript[A, m] ==
((m + \[Lambda] - 1)/m) Subscript[A, m - 2] - (2 n + \[Lambda] + 1)
Subscript[A, m - 3] && Element[m, Integers] && m > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List["n", ",", "\[Lambda]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "1"]], "4"]]]], SuperscriptBox["n", FractionBox[RowBox[List[RowBox[List["2", "\[Lambda]"]], "-", "1"]], "4"]]]], SqrtBox["\[Pi]"]], RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Pi]"]], " ", FractionBox[RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "1"]], "4"]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["n", "+", FractionBox[RowBox[List["\[Lambda]", "+", "1"]], "2"]]], ")"]]]]]]]]], "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], RowBox[List["k", "-", "j"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["k", "-", "j", "-", "r"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "r", "+", "s"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "j"]], "-", RowBox[List["2", " ", "k"]], "+", "s"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "k", "-", RowBox[List["2", " ", "r"]], "-", "s"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "\[Lambda]"]], ")"]], "s"], " "]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List["s", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "r"]], "]"]]]]], SubscriptBox["A", RowBox[List["2", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]]], RowBox[List["Cos", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["n", "+", FractionBox[RowBox[List["1", "+", "\[Lambda]"]], "2"]]], ")"]]]]]]]]], "]"]], " ", RowBox[List["NorlundB", "[", RowBox[List["j", ",", RowBox[List["1", "+", "\[Lambda]"]], ",", RowBox[List["1", "+", "\[Lambda]"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], ",", "j"]], "]"]]]]]]]]]], "-", RowBox[List[FractionBox["2", "z"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["k", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], RowBox[List["k", "-", "j", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["k", "-", "j", "-", "r", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "r", "+", "s"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "j"]], "-", RowBox[List["2", " ", "k"]], "+", "s"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "k", "-", RowBox[List["2", " ", "r"]], "-", "s"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "\[Lambda]"]], ")"]], "s"]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List["s", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "r"]], "]"]]]]], " ", SubscriptBox["A", RowBox[List[RowBox[List["2", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]], "-", "1"]]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["n", "+", FractionBox[RowBox[List["1", "+", "\[Lambda]"]], "2"]]], ")"]]]]]]]]], "]"]], RowBox[List["NorlundB", "[", RowBox[List["j", ",", RowBox[List["1", "+", "\[Lambda]"]], ",", RowBox[List["1", "+", "\[Lambda]"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ",", RowBox[List["1", "+", "r"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ",", RowBox[List["1", "+", "r"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], ",", "j"]], "]"]]]]]]]]]]]]]], ")"]], SuperscriptBox["n", RowBox[List["-", "k"]]]]]]], " ", "+", RowBox[List[FractionBox[SqrtBox["z"], RowBox[List["2", SqrtBox["n"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], RowBox[List["k", "-", "j"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["k", "-", "j", "-", "r"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "r", "+", "s"]]], SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "j"]], "-", RowBox[List["2", " ", "k"]], "+", "s"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "k", "-", RowBox[List["2", " ", "r"]], "-", "s"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "\[Lambda]"]], ")"]], "s"], " ", SuperscriptBox["n", RowBox[List["-", "k"]]]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List["s", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "r"]], "]"]]]]], RowBox[List["NorlundB", "[", RowBox[List["j", ",", RowBox[List["1", "+", "\[Lambda]"]], ",", RowBox[List["1", "+", "\[Lambda]"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["5", "4"], "-", "j", "+", "k", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "r"]]]], ")"]], " ", SubscriptBox["A", RowBox[List[RowBox[List["2", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]], "+", "1"]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["3", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["n", "+", FractionBox[RowBox[List["1", "+", "\[Lambda]"]], "2"]]], ")"]]]]]]]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", "j"]], "-", RowBox[List["4", " ", "k"]], "+", RowBox[List["8", " ", "r"]], "+", RowBox[List["4", " ", "s"]], "-", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", "j"]], "-", RowBox[List["4", " ", "k"]], "+", RowBox[List["8", " ", "r"]], "+", RowBox[List["4", " ", "s"]], "-", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]]]], RowBox[List["8", " ", "z"]]], SubscriptBox["A", RowBox[List["2", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]]], RowBox[List["Sin", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["n", "+", FractionBox[RowBox[List["1", "+", "\[Lambda]"]], "2"]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List[SubscriptBox["A", "0"], "\[Equal]", "1"]], "\[And]", "\[IndentingNewLine]", RowBox[List[SubscriptBox["A", "1"], "\[Equal]", "0"]], "\[And]", "\[IndentingNewLine]", RowBox[List[SubscriptBox["A", "2"], "\[Equal]", FractionBox[RowBox[List["\[Lambda]", "+", "1"]], "2"]]], "\[And]", "\[IndentingNewLine]", RowBox[List[SubscriptBox["A", "m"], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["m", "+", "\[Lambda]", "-", "1"]], "m"], SubscriptBox["A", RowBox[List["m", "-", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "\[Lambda]", "+", "1"]], ")"]], SubscriptBox["A", RowBox[List["m", "-", "3"]]]]]]]]], "\[And]", RowBox[List["Element", "[", RowBox[List["m", ",", "Integers"]], "]"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> L </mi> <mi> n </mi> <mi> λ </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> z </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> n </mi> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mfrac> </msup> </mrow> <msqrt> <mi> π </mi> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> r </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> r </mi> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> </mrow> <mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> s </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> r </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "r"], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <msub> <mi> A </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msub> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> <mo> - </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", NorlundB] </annotation> </semantics> <mi> j </mi> <mrow> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> <mo> - </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"], "+", FractionBox["1", "4"]]], ")"]], "r"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> <mo> - </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"], "+", FractionBox["3", "4"]]], ")"]], "r"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> s </mi> <mo> + </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "s", "+", FractionBox["\[Lambda]", "2"], "+", FractionBox["1", "4"]]], ")"]], "s"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mi> s </mi> <mo> + </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"], "+", FractionBox["1", "4"]]], ")"]], "r"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mi> s </mi> <mo> + </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"], "+", FractionBox["3", "4"]]], ")"]], "r"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> λ </mi> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["-", "\[Lambda]"]], ")"]], "j"], Pochhammer] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 2 </mn> <mi> z </mi> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> r </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> </mrow> <mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> s </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> r </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "r"], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <msub> <mi> A </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> <mo> - </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", NorlundB] </annotation> </semantics> <mi> j </mi> <mrow> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> <mo> - </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"], "+", FractionBox["1", "4"]]], ")"]], RowBox[List["r", "+", "1"]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> <mo> - </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"], "+", FractionBox["3", "4"]]], ")"]], RowBox[List["r", "+", "1"]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> s </mi> <mo> + </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "s", "+", FractionBox["\[Lambda]", "2"], "+", FractionBox["1", "4"]]], ")"]], "s"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mi> s </mi> <mo> + </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"], "+", FractionBox["1", "4"]]], ")"]], "r"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mi> s </mi> <mo> + </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"], "+", FractionBox["3", "4"]]], ")"]], "r"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> λ </mi> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["-", "\[Lambda]"]], ")"]], "j"], Pochhammer] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> n </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <msqrt> <mi> z </mi> </msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> r </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> r </mi> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> <mo> ⁢ </mo> <msup> <mi> n </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> s </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> r </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "r"], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", NorlundB] </annotation> </semantics> <mi> j </mi> <mrow> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> <mo> - </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"], "-", FractionBox["1", "4"]]], ")"]], "r"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> <mo> - </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"], "+", FractionBox["1", "4"]]], ")"]], "r"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> s </mi> <mo> + </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "s", "+", FractionBox["\[Lambda]", "2"], "+", FractionBox["3", "4"]]], ")"]], "s"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mi> s </mi> <mo> + </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"], "+", FractionBox["3", "4"]]], ")"]], "r"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mi> s </mi> <mo> + </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"], "+", FractionBox["5", "4"]]], ")"]], "r"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> λ </mi> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["-", "\[Lambda]"]], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> A </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> <mo> - </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ⁢ </mo> <msub> <mi> A </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msub> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> <mo> - </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> A </mi> <mn> 0 </mn> </msub> <mo>  </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> A </mi> <mn> 1 </mn> </msub> <mo>  </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> A </mi> <mn> 2 </mn> </msub> <mo>  </mo> <mfrac> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> A </mi> <mi> m </mi> </msub> <mo>  </mo> <mrow> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> + </mo> <mi> λ </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> <mo> ⁢ </mo> <msub> <mi> A </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> A </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 3 </mn> </mrow> </msub> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> LaguerreL </ci> <ci> n </ci> <ci> λ </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> n </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> n </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> </apply> </uplimit> <apply> <sum /> <bvar> <ci> r </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </uplimit> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> j </ci> <ci> r </ci> <ci> s </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <ci> s </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <ci> s </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> j </ci> </apply> <apply> <factorial /> <ci> s </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> r </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> r </ci> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> NorlundB </ci> <ci> j </ci> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> r </ci> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> r </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> r </ci> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> r </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> s </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> r </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> r </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <sum /> <bvar> <ci> r </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> j </ci> <ci> r </ci> <ci> s </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <ci> s </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <ci> s </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> j </ci> </apply> <apply> <factorial /> <ci> s </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 3 <sep /> 2 </cn> <ci> r </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> r </ci> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> NorlundB </ci> <ci> j </ci> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> r </ci> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> r </ci> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <plus /> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> s </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> r </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> r </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> </apply> </uplimit> <apply> <sum /> <bvar> <ci> r </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </uplimit> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> j </ci> <ci> r </ci> <ci> s </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <ci> s </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <ci> s </ci> </apply> <apply> <power /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> j </ci> </apply> <apply> <factorial /> <ci> s </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 3 <sep /> 2 </cn> <ci> r </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> NorlundB </ci> <ci> j </ci> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> r </ci> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> r </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> r </ci> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> r </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> s </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> r </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 4 </cn> </apply> <ci> r </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> <ci> j </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> r </ci> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> r </ci> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> n </ci> <infinity /> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> A </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> m </ci> <ci> λ </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> -3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LaguerreL", "[", RowBox[List["n_", ",", "\[Lambda]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "1"]], ")"]]]]], " ", SuperscriptBox["n", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "-", "1"]], ")"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["-", "\[Pi]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "1"]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["n", "+", FractionBox[RowBox[List["\[Lambda]", "+", "1"]], "2"]]], ")"]]]]]]]]], "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], RowBox[List["k", "-", "j"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["k", "-", "j", "-", "r"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "r", "+", "s"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "j"]], "-", RowBox[List["2", " ", "k"]], "+", "s"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "k", "-", RowBox[List["2", " ", "r"]], "-", "s"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "\[Lambda]"]], ")"]], "s"]]], ")"]], " ", SubscriptBox["A", RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["n", "+", FractionBox[RowBox[List["1", "+", "\[Lambda]"]], "2"]]], ")"]]]]]]]]], "]"]], " ", RowBox[List["NorlundB", "[", RowBox[List["j", ",", RowBox[List["1", "+", "\[Lambda]"]], ",", RowBox[List["1", "+", "\[Lambda]"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], ",", "j"]], "]"]]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List["s", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "r"]], "]"]]]]]]]]]]], "-", FractionBox[RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["k", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], RowBox[List["k", "-", "j", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["k", "-", "j", "-", "r", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "r", "+", "s"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "j"]], "-", RowBox[List["2", " ", "k"]], "+", "s"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "k", "-", RowBox[List["2", " ", "r"]], "-", "s"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "\[Lambda]"]], ")"]], "s"]]], ")"]], " ", SubscriptBox["A", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]], "-", "1"]]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["n", "+", FractionBox[RowBox[List["1", "+", "\[Lambda]"]], "2"]]], ")"]]]]]]]]], "]"]], " ", RowBox[List["NorlundB", "[", RowBox[List["j", ",", RowBox[List["1", "+", "\[Lambda]"]], ",", RowBox[List["1", "+", "\[Lambda]"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ",", RowBox[List["1", "+", "r"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ",", RowBox[List["1", "+", "r"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "j", "+", "k", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], ",", "j"]], "]"]]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List["s", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "r"]], "]"]]]]]]]]]]]]], "z"]]], ")"]], " ", SuperscriptBox["n", RowBox[List["-", "k"]]]]]]], "+", FractionBox[RowBox[List[SqrtBox["z"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], RowBox[List["k", "-", "j"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["k", "-", "j", "-", "r"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "r", "+", "s"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "j"]], "-", RowBox[List["2", " ", "k"]], "+", "s"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "k", "-", RowBox[List["2", " ", "r"]], "-", "s"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "\[Lambda]"]], ")"]], "s"], " ", SuperscriptBox["n", RowBox[List["-", "k"]]]]], ")"]], " ", RowBox[List["NorlundB", "[", RowBox[List["j", ",", RowBox[List["1", "+", "\[Lambda]"]], ",", RowBox[List["1", "+", "\[Lambda]"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", "j", "+", "k", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["5", "4"], "-", "j", "+", "k", "-", "r", "-", "s", "+", FractionBox["\[Lambda]", "2"]]], ",", "r"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "r"]]]], ")"]], " ", SubscriptBox["A", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]], "+", "1"]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["3", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["n", "+", FractionBox[RowBox[List["1", "+", "\[Lambda]"]], "2"]]], ")"]]]]]]]]], "]"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", "j"]], "-", RowBox[List["4", " ", "k"]], "+", RowBox[List["8", " ", "r"]], "+", RowBox[List["4", " ", "s"]], "-", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", "j"]], "-", RowBox[List["4", " ", "k"]], "+", RowBox[List["8", " ", "r"]], "+", RowBox[List["4", " ", "s"]], "-", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]]]], ")"]], " ", SubscriptBox["A", RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "j", "-", "r", "-", "s"]], ")"]]]]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "+", "j", "-", "k", "+", "r", "+", "s", "-", FractionBox["\[Lambda]", "2"]]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["n", "+", FractionBox[RowBox[List["1", "+", "\[Lambda]"]], "2"]]], ")"]]]]]]]]], "]"]]]], RowBox[List["8", " ", "z"]]]]], ")"]]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List["s", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "r"]], "]"]]]]]]]]]]]]]]], RowBox[List["2", " ", SqrtBox["n"]]]]]], ")"]]]], SqrtBox["\[Pi]"]], "/;", RowBox[List[RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List[SubscriptBox["A", "0"], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["A", "1"], "\[Equal]", "0"]], "&&", RowBox[List[SubscriptBox["A", "2"], "\[Equal]", FractionBox[RowBox[List["\[Lambda]", "+", "1"]], "2"]]], "&&", RowBox[List[SubscriptBox["A", "m"], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", "+", "\[Lambda]", "-", "1"]], ")"]], " ", SubscriptBox["A", RowBox[List["m", "-", "2"]]]]], "m"], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "\[Lambda]", "+", "1"]], ")"]], " ", SubscriptBox["A", RowBox[List["m", "-", "3"]]]]]]]]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|