|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.08.06.0032.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LaguerreL[n, \[Lambda], z] \[Proportional]
((Gamma[n + \[Lambda] + 1]/n!) E^(z/2)
Sum[Subscript[A, k] (z/(2 (2 n + \[Lambda] + 1)))^(k/2)
BesselJ[\[Lambda] + k, Sqrt[2 (2 n + \[Lambda] + 1) z]],
{k, 0, Infinity}])/(((2 n + \[Lambda] + 1)/2)^(\[Lambda]/2)
z^(\[Lambda]/2)) /; (n -> Infinity) && Subscript[A, 0] == 1 &&
Subscript[A, 1] == 0 && Subscript[A, 2] == (\[Lambda] + 1)/2 &&
Subscript[A, m] == ((m + \[Lambda] - 1)/m) Subscript[A, m - 2] -
(2 n + \[Lambda] + 1) Subscript[A, m - 3] && Element[m, Integers] && m > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List["n", ",", "\[Lambda]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List["Gamma", "[", RowBox[List["n", "+", "\[Lambda]", "+", "1"]], "]"]], RowBox[List["n", "!"]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[RowBox[List["2", "n"]], "+", "\[Lambda]", "+", "1"]], "2"], ")"]], RowBox[List["-", FractionBox["\[Lambda]", "2"]]]], SuperscriptBox["z", RowBox[List["-", FractionBox["\[Lambda]", "2"]]]], SuperscriptBox["\[ExponentialE]", FractionBox["z", "2"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["A", "k"], SuperscriptBox[RowBox[List["(", FractionBox["z", RowBox[List["2", RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "\[Lambda]", "+", "1"]], ")"]]]]], ")"]], FractionBox["k", "2"]], RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["\[Lambda]", "+", "k"]], ",", SqrtBox[RowBox[List["2", RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "\[Lambda]", "+", "1"]], ")"]], " ", "z"]]]]], "]"]]]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List[SubscriptBox["A", "0"], "\[Equal]", "1"]], "\[And]", "\[IndentingNewLine]", RowBox[List[SubscriptBox["A", "1"], "\[Equal]", "0"]], "\[And]", "\[IndentingNewLine]", RowBox[List[SubscriptBox["A", "2"], "\[Equal]", FractionBox[RowBox[List["\[Lambda]", "+", "1"]], "2"]]], "\[And]", "\[IndentingNewLine]", RowBox[List[SubscriptBox["A", "m"], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["m", "+", "\[Lambda]", "-", "1"]], "m"], SubscriptBox["A", RowBox[List["m", "-", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "\[Lambda]", "+", "1"]], ")"]], SubscriptBox["A", RowBox[List["m", "-", "3"]]]]]]]]], "\[And]", RowBox[List["Element", "[", RowBox[List["m", ",", "Integers"]], "]"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> L </mi> <mi> n </mi> <mi> λ </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mfrac> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mfrac> <mi> λ </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> z </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <msub> <mi> A </mi> <mi> k </mi> </msub> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mrow> <mi> k </mi> <mo> + </mo> <mi> λ </mi> </mrow> </msub> <mo> ( </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> A </mi> <mn> 0 </mn> </msub> <mo>  </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> A </mi> <mn> 1 </mn> </msub> <mo>  </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> A </mi> <mn> 2 </mn> </msub> <mo>  </mo> <mfrac> <mrow> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> A </mi> <mi> m </mi> </msub> <mo>  </mo> <mrow> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> + </mo> <mi> λ </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> <mo> ⁢ </mo> <msub> <mi> A </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> λ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> A </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 3 </mn> </mrow> </msub> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> LaguerreL </ci> <ci> n </ci> <ci> λ </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> λ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Subscript </ci> <ci> A </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> BesselJ </ci> <apply> <plus /> <ci> k </ci> <ci> λ </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> n </ci> <infinity /> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> A </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> m </ci> <ci> λ </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <ci> λ </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> A </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> -3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LaguerreL", "[", RowBox[List["n_", ",", "\[Lambda]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["n", "+", "\[Lambda]", "+", "1"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "\[Lambda]", "+", "1"]], ")"]]]], ")"]], RowBox[List["-", FractionBox["\[Lambda]", "2"]]]], " ", SuperscriptBox["z", RowBox[List["-", FractionBox["\[Lambda]", "2"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["A", "k"], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "\[Lambda]", "+", "1"]], ")"]]]]], ")"]], RowBox[List["k", "/", "2"]]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["\[Lambda]", "+", "k"]], ",", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "\[Lambda]", "+", "1"]], ")"]], " ", "z"]]]]], "]"]]]]]]]], RowBox[List["n", "!"]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["n", "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List[SubscriptBox["A", "0"], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["A", "1"], "\[Equal]", "0"]], "&&", RowBox[List[SubscriptBox["A", "2"], "\[Equal]", FractionBox[RowBox[List["\[Lambda]", "+", "1"]], "2"]]], "&&", RowBox[List[SubscriptBox["A", "m"], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", "+", "\[Lambda]", "-", "1"]], ")"]], " ", SubscriptBox["A", RowBox[List["m", "-", "2"]]]]], "m"], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "\[Lambda]", "+", "1"]], ")"]], " ", SubscriptBox["A", RowBox[List["m", "-", "3"]]]]]]]]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|