|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.08.16.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LaguerreL[n, \[Lambda], Subscript[z, 1] + Subscript[z, 2]] ==
E^Subscript[z, 1] Sum[((-1)^k LaguerreL[n, k + \[Lambda], Subscript[z, 2]]
Subscript[z, 1]^k)/k!, {k, 0, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List["n", ",", "\[Lambda]", ",", RowBox[List[SubscriptBox["z", "1"], "+", SubscriptBox["z", "2"]]]]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["\[ExponentialE]", SubscriptBox["z", "1"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["LaguerreL", "[", RowBox[List["n", ",", RowBox[List["k", "+", "\[Lambda]"]], ",", SubscriptBox["z", "2"]]], "]"]], " ", SubsuperscriptBox["z", "1", "k"]]], RowBox[List["k", "!"]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mi> L </mi> <mi> n </mi> <mi> λ </mi> </msubsup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mi> ⅇ </mi> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mi> k </mi> </msubsup> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mi> L </mi> <mi> n </mi> <mrow> <mi> k </mi> <mo> + </mo> <mi> λ </mi> </mrow> </msubsup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> LaguerreL </ci> <ci> n </ci> <ci> λ </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LaguerreL </ci> <ci> n </ci> <apply> <plus /> <ci> k </ci> <ci> λ </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LaguerreL", "[", RowBox[List["n_", ",", "\[Lambda]_", ",", RowBox[List[SubscriptBox["z_", "1"], "+", SubscriptBox["z_", "2"]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["\[ExponentialE]", SubscriptBox["zz", "1"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["LaguerreL", "[", RowBox[List["n", ",", RowBox[List["k", "+", "\[Lambda]"]], ",", SubscriptBox["zz", "2"]]], "]"]], " ", SubsuperscriptBox["zz", "1", "k"]]], RowBox[List["k", "!"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|