| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/05.17.06.0018.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | NorlundB[n, \[Alpha], z] == z^n UnitStep[n] - 
   Sum[(-1)^k Binomial[n, i + k] z^(n - i - k) 
     Sum[StirlingS1[i + k + 1, r] Sum[(-1)^j j^(r - i - 1) Binomial[i + k, j] 
         Subscript[p, j, k + i] \[Alpha]^i, {j, 1, k + i}], {r, 1, i}], 
    {i, 0, n}, {k, 0, n - i}] /; Subscript[p, j, 0] == 1 && 
  Subscript[p, j, k] == (1/k) Sum[(j m - k + m) Subscript[a, m] 
      Subscript[p, j, k - m], {m, 1, k}] && Subscript[a, k] == 1/(k + 1)! && 
  Element[k, Integers] && k >= 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["NorlundB", "[", RowBox[List["n", ",", "\[Alpha]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List["UnitStep", "[", "n", "]"]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "i"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["Binomial", "[", RowBox[List["n", ",", RowBox[List["i", "+", "k"]]]], "]"]], " ", SuperscriptBox["z", RowBox[List["n", "-", "i", "-", "k"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "i"], " ", RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List[RowBox[List["i", "+", "k", "+", "1"]], ",", "r"]], "]"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["k", "+", "i"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["j", RowBox[List["r", "-", "i", "-", "1"]]], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["i", "+", "k"]], ",", "j"]], "]"]], SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "+", "i"]]]]], SuperscriptBox["\[Alpha]", "i"]]]]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "0"]]], "\[Equal]", "1"]], "\[And]", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], "\[Equal]", RowBox[List[FractionBox["1", "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "k"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["j", " ", "m"]], "-", "k", "+", "m"]], ")"]], SubscriptBox["a", "m"], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "-", "m"]]]]]]]]]]]]], "\[And]", RowBox[List[SubscriptBox["a", "k"], "\[Equal]", FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]]]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", "\[GreaterEqual]", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msubsup>  <semantics>  <mi> B </mi>  <annotation encoding='Mathematica'> TagBox["B", NorlundB] </annotation>  </semantics>  <mi> n </mi>  <mrow>  <mo> ( </mo>  <mi> α </mi>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <msup>  <mi> z </mi>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <semantics>  <mi> θ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> UnitStep </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mi> n </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> i </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> i </mi>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mi> i </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List["i", "+", "k"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> i </mi>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> r </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> i </mi>  </munderover>  <mrow>  <msubsup>  <semantics>  <mi> S </mi>  <annotation encoding='Mathematica'> TagBox["S", StirlingS1] </annotation>  </semantics>  <mrow>  <mi> i </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mo> ( </mo>  <mi> r </mi>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> i </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> j </mi>  <mrow>  <mi> r </mi>  <mo> - </mo>  <mi> i </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mi> i </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["i", "+", "k"]], Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox["j", Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <msub>  <mi> p </mi>  <mrow>  <mi> j </mi>  <mo> , </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> i </mi>  </mrow>  </mrow>  </msub>  <mo> ⁢ </mo>  <msup>  <mi> α </mi>  <mi> i </mi>  </msup>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <msub>  <mi> p </mi>  <mrow>  <mi> j </mi>  <mo> , </mo>  <mn> 0 </mn>  </mrow>  </msub>  <mo>  </mo>  <mn> 1 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> p </mi>  <mrow>  <mi> j </mi>  <mo> , </mo>  <mi> k </mi>  </mrow>  </msub>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mi> k </mi>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> m </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> j </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  <mo> - </mo>  <mi> k </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <mi> a </mi>  <mi> m </mi>  </msub>  <mo> ⁢ </mo>  <msub>  <mi> p </mi>  <mrow>  <mi> j </mi>  <mo> , </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> m </mi>  </mrow>  </mrow>  </msub>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo>  </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> k </mi>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> NorlundB </ci>  <ci> n </ci>  <ci> α </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <ci> n </ci>  </apply>  <apply>  <ci> UnitStep </ci>  <ci> n </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> i </ci>  </apply>  </apply>  </uplimit>  <apply>  <sum />  <bvar>  <ci> i </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <apply>  <plus />  <ci> i </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> i </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> r </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <ci> i </ci>  </uplimit>  <apply>  <times />  <apply>  <ci> StirlingS1 </ci>  <apply>  <plus />  <ci> i </ci>  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  <ci> r </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> i </ci>  <ci> k </ci>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <ci> j </ci>  <apply>  <plus />  <ci> r </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> i </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <apply>  <plus />  <ci> i </ci>  <ci> k </ci>  </apply>  <ci> j </ci>  </apply>  <apply>  <ci> Subscript </ci>  <ci> p </ci>  <ci> j </ci>  <apply>  <plus />  <ci> k </ci>  <ci> i </ci>  </apply>  </apply>  <apply>  <power />  <ci> α </ci>  <ci> i </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <eq />  <apply>  <ci> Subscript </ci>  <ci> p </ci>  <ci> j </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <eq />  <apply>  <ci> Subscript </ci>  <ci> p </ci>  <ci> j </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> m </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <ci> j </ci>  <ci> m </ci>  </apply>  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <ci> m </ci>  </apply>  <apply>  <ci> Subscript </ci>  <ci> p </ci>  <ci> j </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <eq />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> k </ci>  <ci> ℕ </ci>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["NorlundB", "[", RowBox[List["n_", ",", "\[Alpha]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List["UnitStep", "[", "n", "]"]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "i"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", RowBox[List["i", "+", "k"]]]], "]"]], " ", SuperscriptBox["z", RowBox[List["n", "-", "i", "-", "k"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "i"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List[RowBox[List["i", "+", "k", "+", "1"]], ",", "r"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["k", "+", "i"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["j", RowBox[List["r", "-", "i", "-", "1"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["i", "+", "k"]], ",", "j"]], "]"]], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "+", "i"]]]]], " ", SuperscriptBox["\[Alpha]", "i"]]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "0"]]], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], "\[Equal]", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "k"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["j", " ", "m"]], "-", "k", "+", "m"]], ")"]], " ", SubscriptBox["a", "m"], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "-", "m"]]]]]]]]], "k"]]], "&&", RowBox[List[SubscriptBox["a", "k"], "\[Equal]", FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]]]]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |