|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.08.04.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Limit[PolyLog[\[Nu], x + I \[Epsilon]], \[Epsilon] -> Plus[0]] ==
PolyLog[\[Nu], x] + (2 I Pi Log[x]^(\[Nu] - 1))/Gamma[\[Nu]] /; x > 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["\[Nu]", ",", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]"]]]]]], "]"]], ",", RowBox[List["\[Epsilon]", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["\[Nu]", ",", "x"]], "]"]], "+", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", SuperscriptBox[RowBox[List["Log", "[", "x", "]"]], RowBox[List["\[Nu]", "-", "1"]]]]], RowBox[List["Gamma", "[", "\[Nu]", "]"]]]]]]], "/;", RowBox[List["x", ">", "1"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munder> <mi> lim </mi> <mrow> <mi> ϵ </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mrow> <mo> + </mo> <mn> 0 </mn> </mrow> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mi> ν </mi> </msub> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ϵ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mi> ν </mi> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ν </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mrow> <mi> ν </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> x </mi> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <limit /> <bvar> <ci> ϵ </ci> </bvar> <condition> <apply> <tendsto /> <ci> ϵ </ci> <apply> <plus /> <cn type='integer'> 0 </cn> </apply> </apply> </condition> <apply> <ci> PolyLog </ci> <ci> ν </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <imaginaryi /> <ci> ϵ </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> PolyLog </ci> <ci> ν </ci> <ci> x </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <power /> <apply> <ci> Gamma </ci> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> x </ci> </apply> <apply> <plus /> <ci> ν </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <gt /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Limit", "[", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["\[Nu]_", ",", RowBox[List["x_", "+", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]_"]]]]]], "]"]], ",", RowBox[List["\[Epsilon]_", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["\[Nu]", ",", "x"]], "]"]], "+", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", SuperscriptBox[RowBox[List["Log", "[", "x", "]"]], RowBox[List["\[Nu]", "-", "1"]]]]], RowBox[List["Gamma", "[", "\[Nu]", "]"]]]]], "/;", RowBox[List["x", ">", "1"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|