|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.08.21.0023.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[(PolyLog[3, -t] PolyLog[4, -t])/t^2, {t, 0, Infinity}] ==
(2 Pi^4)/15 + (10 Pi^2)/3 + 20 Zeta[3] + 4 Zeta[5]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["-", "t"]]]], "]"]], " ", RowBox[List["PolyLog", "[", RowBox[List["4", ",", RowBox[List["-", "t"]]]], "]"]]]], SuperscriptBox["t", "2"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox["\[Pi]", "4"]]], "15"], "+", FractionBox[RowBox[List["10", " ", SuperscriptBox["\[Pi]", "2"]]], "3"], "+", RowBox[List["20", " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> ∞ </mi> </msubsup> <mrow> <mfrac> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mi> t </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 4 </mn> </msup> </mrow> <mn> 15 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 10 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> </mrow> <mn> 3 </mn> </mfrac> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["5", Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> t </ci> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> t </ci> </apply> </apply> <apply> <power /> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 15 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["-", "t_"]]]], "]"]], " ", RowBox[List["PolyLog", "[", RowBox[List["4", ",", RowBox[List["-", "t_"]]]], "]"]]]], SuperscriptBox["t_", "2"]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox["\[Pi]", "4"]]], "15"], "+", FractionBox[RowBox[List["10", " ", SuperscriptBox["\[Pi]", "2"]]], "3"], "+", RowBox[List["20", " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|