Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyLog






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > PolyLog[nu,z] > Representations through equivalent functions > With related functions





http://functions.wolfram.com/10.08.27.0004.01









  


  










Input Form





PolyLog[\[Nu], z] == (2 Pi)^(\[Nu] - 1) I Gamma[1 - \[Nu]] (Zeta[1 - \[Nu], Log[z]/(2 Pi I)]/E^((Pi I \[Nu])/2) - E^((Pi I \[Nu])/2) Zeta[1 - \[Nu], 1 - Log[z]/(2 Pi I)]) /; (Im[z] >= 0 && Abs[z] < 1) || (Inequality[0, Less, Arg[z], LessEqual, Pi] && Abs[z] >= 1)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", "\[Pi]"]], ")"]], RowBox[List["\[Nu]", "-", "1"]]], "\[ImaginaryI]", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Nu]"]], "2"]]]], RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", FractionBox[RowBox[List["Log", "[", "z", "]"]], RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Nu]"]], "2"]], RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["1", "-", FractionBox[RowBox[List["Log", "[", "z", "]"]], RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]"]]]]]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Im", "[", "z", "]"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List["0", "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "\[Pi]"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[GreaterEqual]", "1"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], Zeta, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;log&quot;, &quot;(&quot;, &quot;z&quot;, &quot;)&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Pi]&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;]]], Zeta, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$], Zeta[ZetaDump`e1$, ZetaDump`e2$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], Zeta, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, FractionBox[RowBox[List[&quot;log&quot;, &quot;(&quot;, &quot;z&quot;, &quot;)&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Pi]&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;]]]]], Zeta, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$], Zeta[ZetaDump`e1$, ZetaDump`e2$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8805; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mi> &#960; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8805; </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> PolyLog </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <imaginaryi /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <pi /> <imaginaryi /> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <times /> <apply> <ln /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <imaginaryi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <or /> <apply> <and /> <apply> <geq /> <apply> <imaginary /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <and /> <apply> <ci> Inequality </ci> <cn type='integer'> 0 </cn> <lt /> <apply> <arg /> <ci> z </ci> </apply> <leq /> <pi /> </apply> <apply> <geq /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyLog", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], RowBox[List["\[Nu]", "-", "1"]]], " ", "\[ImaginaryI]", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Nu]"]], ")"]]]]], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", FractionBox[RowBox[List["Log", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Nu]"]], "2"]], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["1", "-", FractionBox[RowBox[List["Log", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]]]]]]], "]"]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Im", "[", "z", "]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List["0", "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "\[Pi]"]], "&&", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[GreaterEqual]", "1"]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02