|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.10.08.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RamanujanTauL[z] == Product[1/(1 - RamanujanTau[Subscript[p, j]]/
Subscript[p, j]^z + Subscript[p, j]^(11 - 2 z)), {j, 1, Infinity}] /;
Element[Subscript[p, j], Primes] && Re[z] > 13/2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RamanujanTauL", "[", "z", "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "\[Infinity]"], FractionBox["1", RowBox[List["1", "-", RowBox[List[RowBox[List["RamanujanTau", "[", SubscriptBox["p", "j"], "]"]], SubsuperscriptBox["p", "j", RowBox[List["-", "z"]]]]], "+", SubsuperscriptBox["p", "j", RowBox[List["11", "-", RowBox[List["2", " ", "z"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["p", "j"], "\[Element]", "Primes"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", FractionBox["13", "2"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> τL </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mrow> <semantics> <mi> τ </mi> <annotation encoding='Mathematica'> TagBox["\[Tau]", RamanujanTau] </annotation> </semantics> <mo> ( </mo> <msub> <mi> p </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> p </mi> <mi> j </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msubsup> </mrow> <mo> + </mo> <msubsup> <mi> p </mi> <mi> j </mi> <mrow> <mn> 11 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> p </mi> <mi> j </mi> </msub> <mo> ∈ </mo> <semantics> <mi> ℙ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalP]", Function[List[], Primes]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mfrac> <mn> 13 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> τL </ci> <ci> z </ci> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> RamanujanTau </ci> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <apply> <plus /> <cn type='integer'> 11 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <primes /> </apply> <apply> <gt /> <apply> <real /> <ci> z </ci> </apply> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RamanujanTauL", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "\[Infinity]"], FractionBox["1", RowBox[List["1", "-", RowBox[List[RowBox[List["RamanujanTau", "[", SubscriptBox["p", "j"], "]"]], " ", SubsuperscriptBox["p", "j", RowBox[List["-", "z"]]]]], "+", SubsuperscriptBox["p", "j", RowBox[List["11", "-", RowBox[List["2", " ", "z"]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["p", "j"], "\[Element]", "Primes"]], "&&", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", FractionBox["13", "2"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|