
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/10.04.06.0014.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
RiemannSiegelZ[z] \[Proportional] (-(1/Sqrt[-2 I (z + I/2)]))
(1 + (I/2) (EulerGamma - Log[2 Pi]) (z + I/2) +
(1/48) (Pi^2 - 6 (EulerGamma - 3 Log[2 Pi]) (EulerGamma + Log[2 Pi]) +
48 Derivative[2][Zeta][0]) (z + I/2)^2 +
(I/96) (-10 EulerGamma^3 - 18 EulerGamma^2 Log[2 Pi] -
EulerGamma (Pi^2 + 6 (Log[2 Pi]^2 - 8 StieltjesGamma[1])) +
Log[2 Pi] (Pi^2 + 2 Log[2 Pi]^2 + 48 StieltjesGamma[1]) -
96 StieltjesGamma[2] + 16 Zeta[3]) (z + I/2)^3 + \[Ellipsis]) /;
(z -> -(I/2))
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RiemannSiegelZ", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["-", FractionBox["1", SqrtBox[RowBox[List[RowBox[List["-", "2"]], "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "+", FractionBox["\[ImaginaryI]", "2"]]], ")"]]]]]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List[FractionBox["\[ImaginaryI]", "2"], RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], ")"]], RowBox[List["(", RowBox[List["z", "+", FractionBox["\[ImaginaryI]", "2"]]], ")"]]]], "+", RowBox[List[FractionBox["1", "48"], RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "-", RowBox[List["6", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["3", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["EulerGamma", "+", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], ")"]]]], "+", RowBox[List["48", " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "0", "]"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", FractionBox["\[ImaginaryI]", "2"]]], ")"]], "2"]]], "+", RowBox[List[FractionBox["\[ImaginaryI]", "96"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "10"]], " ", SuperscriptBox["EulerGamma", "3"]]], "-", RowBox[List["18", " ", SuperscriptBox["EulerGamma", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["EulerGamma", " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["6", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], "-", RowBox[List["8", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", RowBox[List["48", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "-", RowBox[List["96", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["16", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", FractionBox["\[ImaginaryI]", "2"]]], ")"]], "3"]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]]]], ")"]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> Z </mi> <annotation encoding='Mathematica'> TagBox["Z", RiemannSiegelZ] </annotation> </semantics> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 48 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> ζ </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> ⅈ </mi> <mn> 96 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 18 </mn> </mrow> <mo> ⁢ </mo> <msup> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 10 </mn> <mo> ⁢ </mo> <msup> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 96 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mrow> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> RiemannSiegelZ </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -2 </cn> <imaginaryi /> <apply> <plus /> <ci> z </ci> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <eulergamma /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 48 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -6 </cn> <apply> <plus /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <eulergamma /> </apply> <apply> <plus /> <eulergamma /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <cn type='integer'> 0 </cn> </apply> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 2 </cn> </list> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 96 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -18 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <eulergamma /> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 96 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RiemannSiegelZ", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["1", "+", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "+", FractionBox["\[ImaginaryI]", "2"]]], ")"]]]], "+", RowBox[List[FractionBox["1", "48"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "-", RowBox[List["6", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["3", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["EulerGamma", "+", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], ")"]]]], "+", RowBox[List["48", " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "0", "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", FractionBox["\[ImaginaryI]", "2"]]], ")"]], "2"]]], "+", RowBox[List[FractionBox["1", "96"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "10"]], " ", SuperscriptBox["EulerGamma", "3"]]], "-", RowBox[List["18", " ", SuperscriptBox["EulerGamma", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["EulerGamma", " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["6", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], "-", RowBox[List["8", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", RowBox[List["48", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "-", RowBox[List["96", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["16", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", FractionBox["\[ImaginaryI]", "2"]]], ")"]], "3"]]], "+", "\[Ellipsis]"]], SqrtBox[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "+", FractionBox["\[ImaginaryI]", "2"]]], ")"]]]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]]]], ")"]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|