
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/10.04.06.0005.02
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
RiemannSiegelZ[z] \[Proportional] RiemannSiegelZ[Subscript[z, 0]]
(1 - (I/4) (2 Log[Pi] - PolyGamma[1/4 - (I Subscript[z, 0])/2] -
PolyGamma[1/4 + (I Subscript[z, 0])/2] -
(4 Derivative[1][Zeta][1/2 + I Subscript[z, 0]])/
Zeta[1/2 + I Subscript[z, 0]]) (z - Subscript[z, 0]) +
((1/8) Zeta[1/2 + I Subscript[z, 0]]
(2 (Zeta[2, 1/4 - (I Subscript[z, 0])/2] -
Zeta[2, 1/4 + (I Subscript[z, 0])/2]) -
(-2 Log[Pi] + PolyGamma[1/4 - (I Subscript[z, 0])/2] +
PolyGamma[1/4 + (I Subscript[z, 0])/2])^2) -
(-2 Log[Pi] + PolyGamma[1/4 - (I Subscript[z, 0])/2] +
PolyGamma[1/4 + (I Subscript[z, 0])/2]) Derivative[1][Zeta][
1/2 + I Subscript[z, 0]] - 2 Derivative[2][Zeta][
1/2 + I Subscript[z, 0]]) ((z - Subscript[z, 0])^2/
(4 Zeta[1/2 + I Subscript[z, 0]])) + O[(z - Subscript[z, 0])^3]) /;
(z -> Subscript[z, 0]) && !(Element[n, Integers] && n > 0)
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RiemannSiegelZ", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["RiemannSiegelZ", "[", SubscriptBox["z", "0"], "]"]], RowBox[List["(", RowBox[List["1", "-", RowBox[List[FractionBox["\[ImaginaryI]", "4"], RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]], "]"]], "-", FractionBox[RowBox[List["4", " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]]]], "]"]]]], RowBox[List["Zeta", "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]]]], "]"]]]]], ")"]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "8"], RowBox[List["Zeta", "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", RowBox[List["2", ",", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]]]], "]"]], "-", RowBox[List["Zeta", "[", RowBox[List["2", ",", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]]]], "]"]]]], ")"]]]], "-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]], "]"]]]], ")"]], "2"]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]], "]"]]]], ")"]], " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]]]], "]"]]]]]], ")"]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"], " ", "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["Zeta", "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]]]], "]"]]]], ")"]]]]]], "+", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "3"], " ", "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["z", "0"]]], ")"]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List["Element", "[", RowBox[List["n", ",", "Integers"]], "]"]], "\[And]", RowBox[List["n", ">", "0"]]]], "]"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> Z </mi> <annotation encoding='Mathematica'> TagBox["Z", RiemannSiegelZ] </annotation> </semantics> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <semantics> <mi> Z </mi> <annotation encoding='Mathematica'> TagBox["Z", RiemannSiegelZ] </annotation> </semantics> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mfrac> <mi> ⅈ </mi> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> π </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> ζ </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "+", FractionBox["1", "2"]]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "+", FractionBox["1", "2"]]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["2", Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> <mo> - </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["2", Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"], "+", FractionBox["1", "4"]]], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> π </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "+", FractionBox["1", "2"]]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> π </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> ζ </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> ζ </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∉ </mo> <msup> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> RiemannSiegelZ </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <ci> RiemannSiegelZ </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <pi /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <ci> Zeta </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <pi /> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <pi /> </apply> </apply> </apply> </apply> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <list> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 2 </cn> </list> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <notin /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RiemannSiegelZ", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["RiemannSiegelZ", "[", SubscriptBox["zz", "0"], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]], "2"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]], "2"]]], "]"]], "-", FractionBox[RowBox[List["4", " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]]]], "]"]]]], RowBox[List["Zeta", "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]]]], "]"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["Zeta", "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", RowBox[List["2", ",", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]], "2"]]]]], "]"]], "-", RowBox[List["Zeta", "[", RowBox[List["2", ",", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]], "2"]]]]], "]"]]]], ")"]]]], "-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]], "2"]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]], "2"]]], "]"]]]], ")"]], "2"]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]], "2"]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]], "2"]]], "]"]]]], ")"]], " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["Zeta", "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]]]], "]"]]]]], "+", SuperscriptBox[RowBox[List["O", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], "3"]]], ")"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["zz", "0"]]], ")"]], "&&", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]], ")"]]]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|