
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/10.04.06.0006.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
RiemannSiegelZ[z] \[Proportional]
((-1)^k 2^(-(1/2) - 2 k) Pi^(1/4 - k) Sqrt[I (-(I/2) - 2 I k + z)] (2 k)!
Product[2/Sqrt[1 + 4 j + 2 I z], {j, 0, k - 1}] Zeta[1 + 2 k]
(1 - (1/(4 Zeta[1 + 2 k])) (I (-(I/2) - 2 I k + z)
((EulerGamma - 2 Log[4 Pi] - PolyGamma[1/2 + k] +
4 PolyGamma[1 + 2 k]) Zeta[1 + 2 k] +
4 Derivative[1][Zeta][1 + 2 k])) -
((-(I/2) - 2 I k + z)^2 (Zeta[1 + 2 k] (EulerGamma^2 - Pi^2 +
4 EulerGamma Log[Pi] + 4 Log[Pi]^2 - 8 EulerGamma Log[2 Pi] -
16 Log[Pi] Log[2 Pi] + 16 Log[2 Pi]^2 + PolyGamma[1/2 + k]^2 +
PolyGamma[1/2 + k] (-2 EulerGamma + Log[256] + 4 Log[Pi] -
8 PolyGamma[1 + 2 k]) + 8 (EulerGamma - Log[16] - 2 Log[Pi])
PolyGamma[1 + 2 k] + 16 PolyGamma[1 + 2 k]^2 +
16 PolyGamma[1, 1 + 2 k] - 2 Zeta[2, 1/2 + k]) +
8 (EulerGamma - Log[16] - 2 Log[Pi] - PolyGamma[1/2 + k] +
4 PolyGamma[1 + 2 k]) Derivative[1][Zeta][1 + 2 k] +
16 Derivative[2][Zeta][1 + 2 k]))/(32 Zeta[1 + 2 k])))/
E^((1/2) LogGamma[1/2 + k]) + O[(-(I/2) - 2 I k + z)^3] /;
(z -> I/2 + 2 I k) && Element[k, Integers] && k > 0
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RiemannSiegelZ", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", RowBox[List["2", " ", "k"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["LogGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k"]], "]"]]]]], " ", SuperscriptBox["\[Pi]", RowBox[List[FractionBox["1", "4"], "-", "k"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k"]], "+", "z"]], ")"]]]]], " ", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "0"]], RowBox[List["k", "-", "1"]]], FractionBox["2", SqrtBox[RowBox[List["1", "+", RowBox[List["4", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]]]]]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox["1", RowBox[List["4", " ", RowBox[List["Zeta", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k"]], "+", "z"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["4", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k"]], "]"]], "+", RowBox[List["4", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]]], ")"]]]], ")"]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k"]], "+", "z"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Zeta", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["EulerGamma", "2"], "-", SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["4", " ", "EulerGamma", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["Log", "[", "\[Pi]", "]"]], "2"]]], "-", RowBox[List["8", " ", "EulerGamma", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["16", " ", RowBox[List["Log", "[", "\[Pi]", "]"]], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["16", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k"]], "]"]], "2"], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "EulerGamma"]], "+", RowBox[List["Log", "[", "256", "]"]], "+", RowBox[List["4", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "-", RowBox[List["8", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["8", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", "16", "]"]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]]]], ")"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]], "+", RowBox[List["16", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]], "2"]]], "+", RowBox[List["16", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["Zeta", "[", RowBox[List["2", ",", RowBox[List[FractionBox["1", "2"], "+", "k"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["8", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", "16", "]"]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k"]], "]"]], "+", RowBox[List["4", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]], "+", RowBox[List["16", " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["32", " ", RowBox[List["Zeta", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k"]], "+", "z"]], ")"]], "3"], "]"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List[FractionBox["\[ImaginaryI]", "2"], "+", RowBox[List["2", "\[ImaginaryI]", " ", "k"]]]]]], ")"]], "\[And]", RowBox[List["Element", "[", RowBox[List["k", ",", "Integers"]], "]"]], "\[And]", RowBox[List["k", ">", "0"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> Z </mi> <annotation encoding='Mathematica'> TagBox["Z", RiemannSiegelZ] </annotation> </semantics> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mi> logΓ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mn> 2 </mn> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mfrac> <mi> ⅈ </mi> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> ζ </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> π </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> π </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> π </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 16 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> π </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 256 </mn> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> π </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["2", Rule[Editable, True]], ",", TagBox[RowBox[List["k", "+", FractionBox["1", "2"]]], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 16 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> π </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> ζ </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> ζ </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mrow> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> RiemannSiegelZ </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> LogGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> k </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <eulergamma /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ln /> <pi /> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ln /> <pi /> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <eulergamma /> <apply> <ln /> <pi /> </apply> </apply> <apply> <power /> <eulergamma /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <eulergamma /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <pi /> </apply> </apply> </apply> <eulergamma /> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <cn type='integer'> 256 </cn> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ln /> <pi /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <pi /> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <eulergamma /> </apply> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <list> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </list> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> k </ci> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RiemannSiegelZ", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", RowBox[List["2", " ", "k"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["LogGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k"]], "]"]]]]], " ", SuperscriptBox["\[Pi]", RowBox[List[FractionBox["1", "4"], "-", "k"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k"]], "+", "z"]], ")"]]]]], " ", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "0"]], RowBox[List["k", "-", "1"]]], FractionBox["2", SqrtBox[RowBox[List["1", "+", RowBox[List["4", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]]]]]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k"]], "+", "z"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["4", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k"]], "]"]], "+", RowBox[List["4", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]]], ")"]]]], RowBox[List["4", " ", RowBox[List["Zeta", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]], "-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k"]], "+", "z"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Zeta", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["EulerGamma", "2"], "-", SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["4", " ", "EulerGamma", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["Log", "[", "\[Pi]", "]"]], "2"]]], "-", RowBox[List["8", " ", "EulerGamma", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["16", " ", RowBox[List["Log", "[", "\[Pi]", "]"]], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["16", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k"]], "]"]], "2"], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "EulerGamma"]], "+", RowBox[List["Log", "[", "256", "]"]], "+", RowBox[List["4", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "-", RowBox[List["8", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["8", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", "16", "]"]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]]]], ")"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]], "+", RowBox[List["16", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]], "2"]]], "+", RowBox[List["16", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["Zeta", "[", RowBox[List["2", ",", RowBox[List[FractionBox["1", "2"], "+", "k"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["8", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", "16", "]"]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k"]], "]"]], "+", RowBox[List["4", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]], "+", RowBox[List["16", " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]]], ")"]]]], RowBox[List["32", " ", RowBox[List["Zeta", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]]]]], ")"]]]], "+", SuperscriptBox[RowBox[List["O", "[", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k"]], "+", "z"]], "]"]], "3"]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List[FractionBox["\[ImaginaryI]", "2"], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k"]]]]]], ")"]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", ">", "0"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|