
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/10.04.06.0011.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
RiemannSiegelZ[z] \[Proportional] (Exp[-((I (4 z^2 + Pi Sqrt[z^2]))/(8 z))]
(z^2)^((I z)/4) (1 + (3 I)/(16 z) - 9/(512 z^2) + (183 I)/(8192 z^3) -
2277/(524288 z^4) + (212829 I)/(8388608 z^5) - 1364445/(268435456 z^6) +
(326341455 I)/(4294967296 z^7) - 8198081325/(549755813888 z^8) +
(3781776345585 I)/(8796093022208 z^9) - 23339010744567/
(281474976710656 z^10) + (17654423117199729 I)/
(4503599627370496 z^11) - 215619469740469809/(288230376151711744
z^12) + (241858525676475612513 I)/(4611686018427387904 z^13) -
1468114834103562061701/(147573952589676412928 z^14) +
(2284179415871077852696767 I)/(2361183241434822606848 z^15) + O[1/z^16])
Zeta[I z + 1/2])/(4^((I z)/4) Pi^((I z)/2)) /;
Abs[Arg[z^2]] < Pi && (Abs[z] -> Infinity)
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RiemannSiegelZ", "[", "z", "]"]], "\[Proportional]", RowBox[List[SuperscriptBox["4", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "4"]]]], " ", RowBox[List["Exp", "[", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["\[Pi]", " ", SqrtBox[SuperscriptBox["z", "2"]]]]]], ")"]]]], RowBox[List["8", " ", "z"]]]]], "]"]], " ", SuperscriptBox["\[Pi]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"]]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "2"], ")"]], FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "4"]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]"]], RowBox[List["16", "z"]]], "-", FractionBox["9", RowBox[List["512", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List["183", " ", "\[ImaginaryI]"]], RowBox[List["8192", SuperscriptBox["z", "3"]]]], "-", FractionBox["2277", RowBox[List["524288", SuperscriptBox["z", "4"]]]], "+", FractionBox[RowBox[List["212829", " ", "\[ImaginaryI]"]], RowBox[List["8388608", SuperscriptBox["z", "5"]]]], "-", FractionBox["1364445", RowBox[List["268435456", SuperscriptBox["z", "6"]]]], "+", FractionBox[RowBox[List["326341455", " ", "\[ImaginaryI]"]], RowBox[List["4294967296", SuperscriptBox["z", "7"]]]], "-", FractionBox["8198081325", RowBox[List["549755813888", SuperscriptBox["z", "8"]]]], "+", FractionBox[RowBox[List["3781776345585", " ", "\[ImaginaryI]"]], RowBox[List["8796093022208", SuperscriptBox["z", "9"]]]], "-", FractionBox["23339010744567", RowBox[List["281474976710656", SuperscriptBox["z", "10"]]]], "+", FractionBox[RowBox[List["17654423117199729", " ", "\[ImaginaryI]"]], RowBox[List["4503599627370496", SuperscriptBox["z", "11"]]]], "-", FractionBox["215619469740469809", RowBox[List["288230376151711744", SuperscriptBox["z", "12"]]]], "+", FractionBox[RowBox[List["241858525676475612513", " ", "\[ImaginaryI]"]], RowBox[List["4611686018427387904", SuperscriptBox["z", "13"]]]], "-", FractionBox["1468114834103562061701", RowBox[List["147573952589676412928", SuperscriptBox["z", "14"]]]], "+", FractionBox[RowBox[List["2284179415871077852696767", " ", "\[ImaginaryI]"]], RowBox[List["2361183241434822606848", SuperscriptBox["z", "15"]]]], "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", "16"]], "]"]]]], ")"]], RowBox[List["Zeta", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", FractionBox["1", "2"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", SuperscriptBox["z", "2"], "]"]], "]"]], "<", "\[Pi]"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> Z </mi> <annotation encoding='Mathematica'> TagBox["Z", RiemannSiegelZ] </annotation> </semantics> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <msup> <mn> 4 </mn> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> π </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 9 </mn> <mrow> <mn> 512 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 183 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mrow> <mn> 8192 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 2277 </mn> <mrow> <mn> 524288 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 212829 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mrow> <mn> 8388608 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 1364445 </mn> <mrow> <mn> 268435456 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 326341455 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mrow> <mn> 4294967296 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 8198081325 </mn> <mrow> <mn> 549755813888 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 3781776345585 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mrow> <mn> 8796093022208 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 23339010744567 </mn> <mrow> <mn> 281474976710656 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 17654423117199729 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mrow> <mn> 4503599627370496 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 215619469740469809 </mn> <mrow> <mn> 288230376151711744 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 241858525676475612513 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mrow> <mn> 4611686018427387904 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 1468114834103562061701 </mn> <mrow> <mn> 147573952589676412928 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 2284179415871077852696767 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mrow> <mn> 2361183241434822606848 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", FractionBox["1", "2"]]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mi> π </mi> </mrow> <mo> ∧ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> RiemannSiegelZ </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <exp /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <pi /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <apply> <power /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 16 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 183 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 8192 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2277 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 524288 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 212829 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 8388608 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1364445 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 268435456 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 326341455 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 4294967296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8198081325 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 549755813888 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3781776345585 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 8796093022208 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 23339010744567 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 281474976710656 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 17654423117199729 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 4503599627370496 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 215619469740469809 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 288230376151711744 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 241858525676475612513 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 4611686018427387904 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1468114834103562061701 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 147573952589676412928 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2284179415871077852696767 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2361183241434822606848 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <apply> <arg /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <pi /> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RiemannSiegelZ", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["4", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["\[Pi]", " ", SqrtBox[SuperscriptBox["z", "2"]]]]]], ")"]]]], RowBox[List["8", " ", "z"]]]]]], " ", SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "2"], ")"]], FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "4"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]"]], RowBox[List["16", " ", "z"]]], "-", FractionBox["9", RowBox[List["512", " ", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List["183", " ", "\[ImaginaryI]"]], RowBox[List["8192", " ", SuperscriptBox["z", "3"]]]], "-", FractionBox["2277", RowBox[List["524288", " ", SuperscriptBox["z", "4"]]]], "+", FractionBox[RowBox[List["212829", " ", "\[ImaginaryI]"]], RowBox[List["8388608", " ", SuperscriptBox["z", "5"]]]], "-", FractionBox["1364445", RowBox[List["268435456", " ", SuperscriptBox["z", "6"]]]], "+", FractionBox[RowBox[List["326341455", " ", "\[ImaginaryI]"]], RowBox[List["4294967296", " ", SuperscriptBox["z", "7"]]]], "-", FractionBox["8198081325", RowBox[List["549755813888", " ", SuperscriptBox["z", "8"]]]], "+", FractionBox[RowBox[List["3781776345585", " ", "\[ImaginaryI]"]], RowBox[List["8796093022208", " ", SuperscriptBox["z", "9"]]]], "-", FractionBox["23339010744567", RowBox[List["281474976710656", " ", SuperscriptBox["z", "10"]]]], "+", FractionBox[RowBox[List["17654423117199729", " ", "\[ImaginaryI]"]], RowBox[List["4503599627370496", " ", SuperscriptBox["z", "11"]]]], "-", FractionBox["215619469740469809", RowBox[List["288230376151711744", " ", SuperscriptBox["z", "12"]]]], "+", FractionBox[RowBox[List["241858525676475612513", " ", "\[ImaginaryI]"]], RowBox[List["4611686018427387904", " ", SuperscriptBox["z", "13"]]]], "-", FractionBox["1468114834103562061701", RowBox[List["147573952589676412928", " ", SuperscriptBox["z", "14"]]]], "+", FractionBox[RowBox[List["2284179415871077852696767", " ", "\[ImaginaryI]"]], RowBox[List["2361183241434822606848", " ", SuperscriptBox["z", "15"]]]], "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "16"]], "]"]]]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", FractionBox["1", "2"]]], "]"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", SuperscriptBox["z", "2"], "]"]], "]"]], "<", "\[Pi]"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|