|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.04.17.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RiemannSiegelZ[z + 2 I] == ((4 Pi Zeta[-(3/2) + I z])/
(Sqrt[1 - 2 I z] Sqrt[2 I z - 3] Zeta[1/2 + I z])) RiemannSiegelZ[z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["RiemannSiegelZ", "[", RowBox[List["z", "+", RowBox[List["2", " ", "\[ImaginaryI]"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["4", " ", "\[Pi]", " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]], "]"]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]], "-", "3"]]], " ", RowBox[List["Zeta", "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]], "]"]]]]], RowBox[List["RiemannSiegelZ", "[", "z", "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> Z </mi> <annotation encoding='Mathematica'> TagBox["Z", RiemannSiegelZ] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "-", FractionBox["3", "2"]]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", FractionBox["1", "2"]]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <semantics> <mi> Z </mi> <annotation encoding='Mathematica'> TagBox["Z", RiemannSiegelZ] </annotation> </semantics> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> RiemannSiegelZ </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> -3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> RiemannSiegelZ </ci> <ci> z </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RiemannSiegelZ", "[", RowBox[List["z_", "+", RowBox[List["2", " ", "\[ImaginaryI]"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["4", " ", "\[Pi]", " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["RiemannSiegelZ", "[", "z", "]"]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]], "-", "3"]]], " ", RowBox[List["Zeta", "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]], "]"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|