|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.04.17.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RiemannSiegelZ[z + 2 I n] == ((RiemannSiegelZ[z] (4 Pi)^n)/
Product[Sqrt[(-3 + 4 k - 2 I z) (1 - 4 k + 2 I z)], {k, 1, n}])
(Zeta[I (z + 2 I n) + 1/2]/Zeta[I z + 1/2]) /;
Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RiemannSiegelZ", "[", RowBox[List["z", "+", RowBox[List["2", "\[ImaginaryI]", " ", "n"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["RiemannSiegelZ", "[", "z", "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["4", "\[Pi]"]], ")"]], "n"]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "n"], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["4", " ", "k"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", "k"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]]]]], FractionBox[RowBox[List["Zeta", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "+", RowBox[List["2", "\[ImaginaryI]", " ", "n"]]]], ")"]]]], "+", FractionBox["1", "2"]]], "]"]], RowBox[List["Zeta", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", FractionBox["1", "2"]]], "]"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> Z </mi> <annotation encoding='Mathematica'> TagBox["Z", RiemannSiegelZ] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "n"]], "+", "z"]], ")"]]]], "+", FractionBox["1", "2"]]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", FractionBox["1", "2"]]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <semantics> <mi> Z </mi> <annotation encoding='Mathematica'> TagBox["Z", RiemannSiegelZ] </annotation> </semantics> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> RiemannSiegelZ </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> </apply> <ci> n </ci> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> n </ci> </apply> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> z </ci> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> RiemannSiegelZ </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RiemannSiegelZ", "[", RowBox[List["z_", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "n_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["RiemannSiegelZ", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["4", " ", "\[Pi]"]], ")"]], "n"]]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "n"]]]], ")"]]]], "+", FractionBox["1", "2"]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "n"], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["4", " ", "k"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", "k"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]]], ")"]]]]]]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", FractionBox["1", "2"]]], "]"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|