|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.04.21.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[((3 - Sqrt[8] Cos[Log[2] t]) RiemannSiegelZ[t]^2)/(t^2 + 1/4),
{t, 0, Infinity}] == Pi Log[2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "-", RowBox[List[SqrtBox["8"], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["Log", "[", "2", "]"]], " ", "t"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["RiemannSiegelZ", "[", "t", "]"]], "2"]]], RowBox[List[SuperscriptBox["t", "2"], "+", FractionBox["1", "4"]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List["\[Pi]", " ", RowBox[List["Log", "[", "2", "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> ∞ </mi> </msubsup> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mrow> <msqrt> <mn> 8 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> Z </mi> <annotation encoding='Mathematica'> TagBox["Z", RiemannSiegelZ] </annotation> </semantics> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <msup> <mi> t </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <ci> t </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> RiemannSiegelZ </ci> <ci> t </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "-", RowBox[List[SqrtBox["8"], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["Log", "[", "2", "]"]], " ", "t_"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["RiemannSiegelZ", "[", "t_", "]"]], "2"]]], RowBox[List[SuperscriptBox["t_", "2"], "+", FractionBox["1", "4"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["\[Pi]", " ", RowBox[List["Log", "[", "2", "]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|