|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.01.03.0028.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zeta[13] == (89 Pi^13)/257432175 - (16512/8255)
Sum[1/(k^13 (E^(2 Pi k) - 1)), {k, 1, Infinity}] -
(2/8255) Sum[1/(k^13 (E^(2 Pi k) + 1)), {k, 1, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Zeta", "[", "13", "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["89", SuperscriptBox["\[Pi]", "13"]]], "257432175"], "-", RowBox[List[FractionBox["16512", "8255"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox["1", RowBox[List[SuperscriptBox["k", "13"], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", "\[Pi]", " ", "k"]]], "-", "1"]], ")"]]]]]]]]], "-", RowBox[List[FractionBox["2", "8255"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox["1", RowBox[List[SuperscriptBox["k", "13"], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", "\[Pi]", " ", "k"]]], "+", "1"]], ")"]]]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 13 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["13", Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mn> 89 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 13 </mn> </msup> </mrow> <mn> 257432175 </mn> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 16512 </mn> <mn> 8255 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> k </mi> <mn> 13 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 2 </mn> <mn> 8255 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> k </mi> <mn> 13 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Zeta </ci> <cn type='integer'> 13 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 89 </cn> <apply> <power /> <pi /> <cn type='integer'> 13 </cn> </apply> <apply> <power /> <cn type='integer'> 257432175 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 16512 <sep /> 8255 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <ci> k </ci> <cn type='integer'> 13 </cn> </apply> <apply> <plus /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 2 <sep /> 8255 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <ci> k </ci> <cn type='integer'> 13 </cn> </apply> <apply> <plus /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> k </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Zeta", "[", "13", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["89", " ", SuperscriptBox["\[Pi]", "13"]]], "257432175"], "-", FractionBox[RowBox[List["16512", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox["1", RowBox[List[SuperscriptBox["k", "13"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[Pi]", " ", "k"]]], "-", "1"]], ")"]]]]]]]]], "8255"], "-", FractionBox[RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox["1", RowBox[List[SuperscriptBox["k", "13"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[Pi]", " ", "k"]]], "+", "1"]], ")"]]]]]]]]], "8255"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|