|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.01.03.0045.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zeta[38] == (308420411983322 Pi^38)/2403467618492375776343276883984375
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Zeta", "[", "38", "]"]], "\[Equal]", FractionBox[RowBox[List["308420411983322", " ", SuperscriptBox["\[Pi]", "38"]]], "2403467618492375776343276883984375"]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 38 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["38", Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> <mo> ⩵ </mo> <mfrac> <mrow> <mn> 308420411983322 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 38 </mn> </msup> </mrow> <mn> 2403467618492375776343276883984375 </mn> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Zeta </ci> <cn type='integer'> 38 </cn> </apply> <apply> <times /> <cn type='integer'> 308420411983322 </cn> <apply> <power /> <pi /> <cn type='integer'> 38 </cn> </apply> <apply> <power /> <cn type='integer'> 2403467618492375776343276883984375 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Zeta", "[", "38", "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["308420411983322", " ", SuperscriptBox["\[Pi]", "38"]]], "2403467618492375776343276883984375"]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|