|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.01.06.0013.02
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zeta[s] \[Proportional] -(1/2) - (1/2) s Log[2 Pi] +
(1/2) (EulerGamma^2/2 - Pi^2/24 - (1/2) (Log[2] + Log[Pi])^2 +
StieltjesGamma[1]) s^2 + O[s^3]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[" ", RowBox[List[RowBox[List["Zeta", "[", "s", "]"]], "\[Proportional]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", RowBox[List[FractionBox["1", "2"], " ", "s", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["EulerGamma", "2"], "2"], "-", FractionBox[SuperscriptBox["\[Pi]", "2"], "24"], "-", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "2", "]"]], "+", RowBox[List["Log", "[", "\[Pi]", "]"]]]], ")"]], "2"]]], "+", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], ")"]], SuperscriptBox["s", "2"]]], " ", "+", RowBox[List["O", "[", SuperscriptBox["s", "3"], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["s", Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mo> ∝ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> π </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mfrac> <msup> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> <mo> + </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> <mo> - </mo> <mfrac> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mn> 24 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> s </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mi> s </mi> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <ci> Zeta </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <eulergamma /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 24 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> s </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <ci> s </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Zeta", "[", "s_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", RowBox[List[FractionBox["1", "2"], " ", "s", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["EulerGamma", "2"], "2"], "-", FractionBox[SuperscriptBox["\[Pi]", "2"], "24"], "-", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "2", "]"]], "+", RowBox[List["Log", "[", "\[Pi]", "]"]]]], ")"]], "2"]]], "+", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], ")"]], " ", SuperscriptBox["s", "2"]]], "+", SuperscriptBox[RowBox[List["O", "[", "s", "]"]], "3"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|