| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/10.01.06.0026.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Derivative[1][Zeta][s]/Zeta[s] == -(1/(s - 1)) - 
   Sum[Subscript[\[Eta], k] (s - 1)^k, {k, 0, Infinity}] /; 
 (Subscript[\[Eta], k] = 
  (k + 1) Sum[((-1)^(j + 1)/(j + 1)) Subscript[c, k - j, j + 1], 
     {j, 0, k}] /; (Subscript[c, 0, k] = EulerGamma^k && Subscript[c, m, k] = 
     (1/(m EulerGamma)) Sum[(((k m - (k + 1) i) (-1)^(m - i))/(m - i)!) 
        StieltjesGamma[m - i] Subscript[c, i, k], {i, 0, m - 1}])) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", "s", "]"]], RowBox[List["Zeta", "[", "s", "]"]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["s", "-", "1"]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["\[Eta]", "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["s", "-", "1"]], ")"]], "k"]]]]]]]]], "/;", RowBox[List["(", RowBox[List[SubscriptBox["\[Eta]", "k"], "=", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "1"]]], " "]], RowBox[List["j", "+", "1"]]], SubscriptBox["c", RowBox[List[RowBox[List["k", "-", "j"]], ",", RowBox[List["j", "+", "1"]]]]]]]]]]], "/;", RowBox[List["(", RowBox[List[SubscriptBox["c", RowBox[List["0", ",", "k"]]], "=", RowBox[List[RowBox[List[SuperscriptBox["EulerGamma", "k"], "\[And]", SubscriptBox["c", RowBox[List["m", ",", "k"]]]]], "=", RowBox[List[FractionBox["1", RowBox[List["m", " ", "EulerGamma"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["m", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["k", " ", "m"]], "-", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", "i"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "-", "i"]]]]], RowBox[List[RowBox[List["(", RowBox[List["m", "-", "i"]], ")"]], "!"]]], " ", RowBox[List["StieltjesGamma", "[", RowBox[List["m", "-", "i"]], "]"]], " ", SubscriptBox["c", RowBox[List["i", ",", "k"]]]]]]]]]]]]], ")"]]]]]], ")"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ζ </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> s </mi>  <mo> ) </mo>  </mrow>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> s </mi>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["s", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation>  </semantics>  </mfrac>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> s </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </mrow>  <mo> - </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <msub>  <mi> η </mi>  <mi> k </mi>  </msub>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> s </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> η </mi>  <mi> k </mi>  </msub>  <mo> = </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mtext>   </mtext>  </mrow>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msub>  <mi> c </mi>  <mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> , </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </msub>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> c </mi>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mi> k </mi>  </mrow>  </msub>  <mo> = </mo>  <mrow>  <mrow>  <msup>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  <mi> k </mi>  </msup>  <mo> ∧ </mo>  <msub>  <mi> c </mi>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> k </mi>  </mrow>  </msub>  </mrow>  <mo> = </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> m </mi>  <mo> ⁢ </mo>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> i </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> k </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> i </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mi> i </mi>  </mrow>  </msup>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mi> i </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mi> i </mi>  </mrow>  </msub>  <mo> ⁢ </mo>  <msub>  <mi> c </mi>  <mrow>  <mi> i </mi>  <mo> , </mo>  <mi> k </mi>  </mrow>  </msub>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <times />  <apply>  <partialdiff />  <bvar>  <ci> s </ci>  </bvar>  <apply>  <ci> Zeta </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Zeta </ci>  <ci> s </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <ci> s </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> η </ci>  <ci> k </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> s </ci>  <cn type='integer'> -1 </cn>  </apply>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Set </ci>  <apply>  <ci> Subscript </ci>  <ci> η </ci>  <ci> k </ci>  </apply>  <apply>  <ci> Condition </ci>  <apply>  <times />  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Set </ci>  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 0 </cn>  <ci> k </ci>  </apply>  <apply>  <ci> Set </ci>  <apply>  <and />  <apply>  <power />  <eulergamma />  <ci> k </ci>  </apply>  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <ci> m </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <ci> m </ci>  <eulergamma />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> i </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <ci> k </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  <ci> i </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> i </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> i </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> i </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <ci> i </ci>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", FractionBox[RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", "s_", "]"]], RowBox[List["Zeta", "[", "s_", "]"]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["s", "-", "1"]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["\[Eta]", "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["s", "-", "1"]], ")"]], "k"]]]]]]], "/;", RowBox[List["(", RowBox[List[SubscriptBox["\[Eta]", "k"], "=", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "1"]]], " ", SubscriptBox["c", RowBox[List[RowBox[List["k", "-", "j"]], ",", RowBox[List["j", "+", "1"]]]]]]], RowBox[List["j", "+", "1"]]]]]]], "/;", RowBox[List["(", RowBox[List[SubscriptBox["c", RowBox[List["0", ",", "k"]]], "=", RowBox[List[RowBox[List[SuperscriptBox["EulerGamma", "k"], "&&", SubscriptBox["c", RowBox[List["m", ",", "k"]]]]], "=", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["m", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["k", " ", "m"]], "-", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", "i"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "-", "i"]]]]], ")"]], " ", RowBox[List["StieltjesGamma", "[", RowBox[List["m", "-", "i"]], "]"]], " ", SubscriptBox["c", RowBox[List["i", ",", "k"]]]]], RowBox[List[RowBox[List["(", RowBox[List["m", "-", "i"]], ")"]], "!"]]]]], RowBox[List["m", " ", "EulerGamma"]]]]]]], ")"]]]]]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |