|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.01.06.0028.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zeta[5] == (369/62651) Sum[((-1)^k/1024^k) (-(128/(1 + 4 k)^5) +
4/(3 + 4 k)^5 + 1/(4 + 4 k)^5), {k, 0, Infinity}] +
(9/250604) Sum[(1/4096^k) (126976/(1 + 24 k)^5 - 6610944/(2 + 24 k)^5 +
33418240/(3 + 24 k)^5 - 12722176/(4 + 24 k)^5 - 31744/(5 + 24 k)^5 +
25829376/(6 + 24 k)^5 + 15872/(7 + 24 k)^5 + 38170624/(8 + 24 k)^5 -
4177280/(9 + 24 k)^5 - 413184/(10 + 24 k)^5 - 3968/(11 + 24 k)^5 -
6323008/(12 + 24 k)^5 - 1984/(13 + 24 k)^5 - 103296/(14 + 24 k)^5 -
522160/(15 + 24 k)^5 + 2385664/(16 + 24 k)^5 + 496/(17 + 24 k)^5 +
403584/(18 + 24 k)^5 - 248/(19 + 24 k)^5 - 49696/(20 + 24 k)^5 +
65270/(21 + 24 k)^5 - 6456/(22 + 24 k)^5 + 62/(23 + 24 k)^5 +
128125/(24 + 24 k)^5), {k, 0, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Zeta", "[", "5", "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["369", " "]], "62651"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], InterpretationBox["\[Infinity]", DirectedInfinity[1]]], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox[RowBox[List["(", "1024", ")"]], "k"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["128", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", "k"]]]], ")"]], "5"]]]], "+", FractionBox["4", SuperscriptBox[RowBox[List["(", RowBox[List["3", "+", RowBox[List["4", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", RowBox[List["4", " ", "k"]]]], ")"]], "5"]]]], ")"]]]]]]]], "+", RowBox[List[FractionBox["9", "250604"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], InterpretationBox["\[Infinity]", DirectedInfinity[1]]], RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["4096", "k"], " "]]], RowBox[List["(", RowBox[List[FractionBox["126976", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["6610944", SuperscriptBox[RowBox[List["(", RowBox[List["2", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["33418240", SuperscriptBox[RowBox[List["(", RowBox[List["3", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["12722176", SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["31744", SuperscriptBox[RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["25829376", SuperscriptBox[RowBox[List["(", RowBox[List["6", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["15872", SuperscriptBox[RowBox[List["(", RowBox[List["7", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["38170624", SuperscriptBox[RowBox[List["(", RowBox[List["8", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["4177280", SuperscriptBox[RowBox[List["(", RowBox[List["9", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["413184", SuperscriptBox[RowBox[List["(", RowBox[List["10", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["3968", SuperscriptBox[RowBox[List["(", RowBox[List["11", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["6323008", SuperscriptBox[RowBox[List["(", RowBox[List["12", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["1984", SuperscriptBox[RowBox[List["(", RowBox[List["13", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["103296", SuperscriptBox[RowBox[List["(", RowBox[List["14", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["522160", SuperscriptBox[RowBox[List["(", RowBox[List["15", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["2385664", SuperscriptBox[RowBox[List["(", RowBox[List["16", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["496", SuperscriptBox[RowBox[List["(", RowBox[List["17", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["403584", SuperscriptBox[RowBox[List["(", RowBox[List["18", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["248", SuperscriptBox[RowBox[List["(", RowBox[List["19", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["49696", SuperscriptBox[RowBox[List["(", RowBox[List["20", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["65270", SuperscriptBox[RowBox[List["(", RowBox[List["21", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["6456", SuperscriptBox[RowBox[List["(", RowBox[List["22", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["62", SuperscriptBox[RowBox[List["(", RowBox[List["23", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["128125", SuperscriptBox[RowBox[List["(", RowBox[List["24", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]]]], ")"]]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["5", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 369 </mn> <mtext> </mtext> </mrow> <mn> 62651 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <msup> <mn> 1024 </mn> <mi> k </mi> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 4 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 128 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 9 </mn> <mn> 250604 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <msup> <mn> 4096 </mn> <mi> k </mi> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 6610944 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> </mrow> <mo> + </mo> <mfrac> <mn> 33418240 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 12722176 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 31744 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mn> 25829376 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mn> 15872 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mn> 38170624 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 4177280 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 413184 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 10 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 3968 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 11 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 6323008 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 12 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 1984 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 13 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 103296 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 14 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 522160 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 15 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mn> 2385664 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 16 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mn> 496 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 17 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mn> 403584 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 18 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 248 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 19 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 49696 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 20 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mn> 65270 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 21 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 6456 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 22 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mn> 62 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 23 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mn> 128125 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 24 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mn> 126976 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 369 <sep /> 62651 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 1024 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 9 <sep /> 250604 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 4096 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6610944 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 33418240 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12722176 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 31744 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 25829376 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 6 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 15872 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 7 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 38170624 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 8 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4177280 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 9 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 413184 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 10 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3968 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 11 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6323008 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 12 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1984 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 13 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 103296 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 14 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 522160 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 15 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2385664 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 16 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 496 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 17 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 403584 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 18 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 248 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 19 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 49696 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 20 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 65270 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 21 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6456 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 22 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 62 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 23 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 128125 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 24 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 126976 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Zeta", "[", "5", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["369", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["128", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", "k"]]]], ")"]], "5"]]]], "+", FractionBox["4", SuperscriptBox[RowBox[List["(", RowBox[List["3", "+", RowBox[List["4", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", RowBox[List["4", " ", "k"]]]], ")"]], "5"]]]], ")"]]]], SuperscriptBox["1024", "k"]]]]]], "62651"], "+", FractionBox[RowBox[List["9", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[FractionBox["126976", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["6610944", SuperscriptBox[RowBox[List["(", RowBox[List["2", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["33418240", SuperscriptBox[RowBox[List["(", RowBox[List["3", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["12722176", SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["31744", SuperscriptBox[RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["25829376", SuperscriptBox[RowBox[List["(", RowBox[List["6", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["15872", SuperscriptBox[RowBox[List["(", RowBox[List["7", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["38170624", SuperscriptBox[RowBox[List["(", RowBox[List["8", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["4177280", SuperscriptBox[RowBox[List["(", RowBox[List["9", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["413184", SuperscriptBox[RowBox[List["(", RowBox[List["10", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["3968", SuperscriptBox[RowBox[List["(", RowBox[List["11", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["6323008", SuperscriptBox[RowBox[List["(", RowBox[List["12", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["1984", SuperscriptBox[RowBox[List["(", RowBox[List["13", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["103296", SuperscriptBox[RowBox[List["(", RowBox[List["14", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["522160", SuperscriptBox[RowBox[List["(", RowBox[List["15", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["2385664", SuperscriptBox[RowBox[List["(", RowBox[List["16", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["496", SuperscriptBox[RowBox[List["(", RowBox[List["17", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["403584", SuperscriptBox[RowBox[List["(", RowBox[List["18", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["248", SuperscriptBox[RowBox[List["(", RowBox[List["19", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["49696", SuperscriptBox[RowBox[List["(", RowBox[List["20", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["65270", SuperscriptBox[RowBox[List["(", RowBox[List["21", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "-", FractionBox["6456", SuperscriptBox[RowBox[List["(", RowBox[List["22", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["62", SuperscriptBox[RowBox[List["(", RowBox[List["23", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]], "+", FractionBox["128125", SuperscriptBox[RowBox[List["(", RowBox[List["24", "+", RowBox[List["24", " ", "k"]]]], ")"]], "5"]]]], SuperscriptBox["4096", "k"]]]]]], "250604"]]]]]]] |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|