|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.01.07.0018.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zeta[2 n + 1] == (((-1)^n 2^(2 n) Pi^(2 n + 1))/(2 n + 1)!)
Integrate[BernoulliB[2 n + 1, x] Tan[(Pi x)/2], {x, 0, 1}] /;
Element[n, Integers] && n >= 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Zeta", "[", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List["2", " ", "n"]]], " ", SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], "!"]]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ",", "x"]], "]"]], " ", RowBox[List["Tan", "[", FractionBox[RowBox[List["\[Pi]", " ", "x"]], "2"], "]"]], RowBox[List["\[DifferentialD]", "x"]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "1"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mn> 1 </mn> </msubsup> <mrow> <mrow> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> x </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mtext> ​ </mtext> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> x </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <cn type='integer'> 1 </cn> </uplimit> <apply> <times /> <apply> <ci> BernoulliB </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> x </ci> </apply> <apply> <tan /> <apply> <times /> <pi /> <ci> x </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["2", " ", "n_"]], "+", "1"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List["2", " ", "n"]]], " ", SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]]]], ")"]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ",", "x"]], "]"]], " ", RowBox[List["Tan", "[", FractionBox[RowBox[List["\[Pi]", " ", "x"]], "2"], "]"]]]], RowBox[List["\[DifferentialD]", "x"]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], "!"]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|