| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/10.01.20.0011.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Derivative[6][Zeta][0] == (5 EulerGamma^6)/2 - (275 Pi^6)/2688 + 
  12 EulerGamma^5 Log[2 Pi] - (1/2) Log[2 Pi]^6 - 
  (19/32) Pi^4 (Log[2 Pi]^2 - 2 StieltjesGamma[1]) + 
  15 Log[2 Pi]^4 StieltjesGamma[1] + (15/8) EulerGamma^4 
   (Pi^2 + 12 Log[2 Pi]^2 + 8 StieltjesGamma[1]) + 
  30 Log[2 Pi]^3 StieltjesGamma[2] + 30 Log[2 Pi]^2 StieltjesGamma[3] + 
  15 Log[2 Pi] StieltjesGamma[4] + 3 StieltjesGamma[5] - 
  20 Log[2 Pi]^3 Zeta[3] + 120 Log[2 Pi] StieltjesGamma[1] Zeta[3] + 
  60 StieltjesGamma[2] Zeta[3] - 20 Zeta[3]^2 + 
  5 EulerGamma^3 (Pi^2 Log[2 Pi] + 4 Log[2 Pi]^3 + 
    12 Log[2 Pi] StieltjesGamma[1] + 6 StieltjesGamma[2] + 8 Zeta[3]) - 
  (5/8) Pi^2 (Log[2 Pi]^4 - 12 Log[2 Pi]^2 StieltjesGamma[1] - 
    12 Log[2 Pi] StieltjesGamma[2] - 4 StieltjesGamma[3] + 
    8 Log[2 Pi] Zeta[3]) + (1/32) EulerGamma^2 
   (19 Pi^4 + 120 Pi^2 (Log[2 Pi]^2 + 2 StieltjesGamma[1]) + 
    240 (Log[2 Pi]^4 + 12 Log[2 Pi]^2 StieltjesGamma[1] + 
      12 Log[2 Pi] StieltjesGamma[2] + 4 StieltjesGamma[3] + 
      8 Log[2 Pi] Zeta[3])) + (15/2) EulerGamma 
   (Pi^2 (2 Log[2 Pi] StieltjesGamma[1] + StieltjesGamma[2]) + 
    2 (6 Log[2 Pi]^2 StieltjesGamma[2] + 4 Log[2 Pi] StieltjesGamma[3] + 
      StieltjesGamma[4] + 4 StieltjesGamma[1] (Log[2 Pi]^3 + 2 Zeta[3]))) - 
  72 Log[2 Pi] Zeta[5] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", "6", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "0", "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["5", " ", SuperscriptBox["EulerGamma", "6"]]], "2"], "-", FractionBox[RowBox[List["275", " ", SuperscriptBox["\[Pi]", "6"]]], "2688"], "+", RowBox[List["12", " ", SuperscriptBox["EulerGamma", "5"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"]]], "-", RowBox[List[FractionBox["19", "32"], " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "+", RowBox[List["15", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List[FractionBox["15", "8"], " ", SuperscriptBox["EulerGamma", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", RowBox[List["8", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["15", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "-", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["120", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["60", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "-", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["5", " ", SuperscriptBox["EulerGamma", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"]]], "+", RowBox[List["12", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["6", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "-", RowBox[List[FractionBox["5", "8"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "-", RowBox[List["12", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "-", RowBox[List["12", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "-", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "32"], " ", SuperscriptBox["EulerGamma", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"]]], "+", RowBox[List["120", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], "+", RowBox[List["2", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "+", RowBox[List["240", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["12", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["15", "2"], " ", "EulerGamma", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "4", "]"]], "+", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["72", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msup>  <mi> ζ </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 6 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "6", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mn> 0 </mn>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 19 </mn>  <mn> 32 </mn>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> π </mi>  <mn> 4 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> log </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 1 </mn>  </msub>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 15 </mn>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 4 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 15 </mn>  <mn> 8 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  <mn> 4 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <msup>  <mi> π </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 30 </mn>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 3 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 2 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 30 </mn>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 3 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 15 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 4 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 5 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 5 </mn>  <mo> ⁢ </mo>  <msup>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 2 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 3 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> π </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 5 </mn>  <mn> 8 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> π </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 12 </mn>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 1 </mn>  </msub>  </mrow>  <mo> - </mo>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 2 </mn>  </msub>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 3 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 4 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 32 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 120 </mn>  <mo> ⁢ </mo>  <msup>  <mi> π </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 240 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 2 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 3 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 4 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 19 </mn>  <mo> ⁢ </mo>  <msup>  <mi> π </mi>  <mn> 4 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 15 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> π </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> log </mi>  <mn> 3 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 2 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 3 </mn>  </msub>  </mrow>  <mo> + </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 4 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 72 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mn> 5 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["5", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mn> 20 </mn>  <mo> ⁢ </mo>  <msup>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation>  </semantics>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 120 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <mn> 60 </mn>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> γ </mi>  <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation>  </semantics>  <mn> 2 </mn>  </msub>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mn> 20 </mn>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 3 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 6 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <msup>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  <mn> 5 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 275 </mn>  <mo> ⁢ </mo>  <msup>  <mi> π </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mn> 2688 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 5 </mn>  <mo> ⁢ </mo>  <msup>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  <mn> 6 </mn>  </msup>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> D </ci>  <apply>  <ci> Zeta </ci>  <cn type='integer'> 0 </cn>  </apply>  <list>  <cn type='integer'> 0 </cn>  <cn type='integer'> 6 </cn>  </list>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 19 <sep /> 32 </cn>  </apply>  <apply>  <power />  <pi />  <cn type='integer'> 4 </cn>  </apply>  <apply>  <plus />  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 15 </cn>  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 15 <sep /> 8 </cn>  <apply>  <power />  <eulergamma />  <cn type='integer'> 4 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 30 </cn>  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 30 </cn>  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 15 </cn>  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 5 </cn>  <apply>  <power />  <eulergamma />  <cn type='integer'> 3 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <ci> Zeta </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <pi />  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='rational'> 5 <sep /> 8 </cn>  <apply>  <power />  <pi />  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -12 </cn>  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <apply>  <ci> Zeta </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 32 </cn>  <apply>  <power />  <eulergamma />  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 120 </cn>  <apply>  <power />  <pi />  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 240 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <apply>  <ci> Zeta </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 19 </cn>  <apply>  <power />  <pi />  <cn type='integer'> 4 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 15 <sep /> 2 </cn>  <eulergamma />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <pi />  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> Zeta </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 72 </cn>  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <apply>  <ci> Zeta </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 20 </cn>  <apply>  <power />  <apply>  <ci> Zeta </ci>  <cn type='integer'> 3 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 120 </cn>  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Zeta </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 60 </cn>  <apply>  <ci> StieltjesGamma </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Zeta </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 20 </cn>  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <ci> Zeta </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  <cn type='integer'> 6 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <power />  <eulergamma />  <cn type='integer'> 5 </cn>  </apply>  <apply>  <ln />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 275 </cn>  <apply>  <power />  <pi />  <cn type='integer'> 6 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2688 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 5 </cn>  <apply>  <power />  <eulergamma />  <cn type='integer'> 6 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", "6", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "0", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["5", " ", SuperscriptBox["EulerGamma", "6"]]], "2"], "-", FractionBox[RowBox[List["275", " ", SuperscriptBox["\[Pi]", "6"]]], "2688"], "+", RowBox[List["12", " ", SuperscriptBox["EulerGamma", "5"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"]]], "-", RowBox[List[FractionBox["19", "32"], " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "+", RowBox[List["15", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List[FractionBox["15", "8"], " ", SuperscriptBox["EulerGamma", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", RowBox[List["8", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["15", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "-", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["120", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["60", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "-", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["5", " ", SuperscriptBox["EulerGamma", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"]]], "+", RowBox[List["12", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["6", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "-", RowBox[List[FractionBox["5", "8"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "-", RowBox[List["12", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "-", RowBox[List["12", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "-", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "32"], " ", SuperscriptBox["EulerGamma", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"]]], "+", RowBox[List["120", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], "+", RowBox[List["2", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "+", RowBox[List["240", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["12", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["15", "2"], " ", "EulerGamma", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "4", "]"]], "+", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["72", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |