Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Zeta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > Zeta[s] > Differentiation > Low-order differentiation > Derivatives at zero





http://functions.wolfram.com/10.01.20.0012.01









  


  










Input Form





Derivative[7][Zeta][0] == (1/384) (1152 EulerGamma^7 + 6720 EulerGamma^6 Log[2 Pi] - 275 Pi^6 Log[2 Pi] + 1344 EulerGamma^5 (Pi^2 + 6 (2 Log[2 Pi]^2 + StieltjesGamma[1])) - 532 Pi^4 (Log[2 Pi]^3 - 6 Log[2 Pi] StieltjesGamma[1] - 3 StieltjesGamma[2] + 2 Zeta[3]) + 5040 EulerGamma^4 (Pi^2 Log[2 Pi] + 4 (Log[2 Pi]^3 + 2 Log[2 Pi] StieltjesGamma[1] + StieltjesGamma[2] + 2 Zeta[3])) + 56 EulerGamma^3 (19 Pi^4 + 120 Pi^2 (Log[2 Pi]^2 + StieltjesGamma[1]) + 240 (Log[2 Pi]^4 + 6 Log[2 Pi]^2 StieltjesGamma[1] + 6 Log[2 Pi] StieltjesGamma[2] + 2 StieltjesGamma[3] + 8 Log[2 Pi] Zeta[3])) + 168 EulerGamma (19 Pi^4 StieltjesGamma[1] + 40 Pi^2 (3 Log[2 Pi]^2 StieltjesGamma[1] + 3 Log[2 Pi] StieltjesGamma[2] + StieltjesGamma[3]) + 48 (10 Log[2 Pi]^2 StieltjesGamma[3] + 5 Log[2 Pi] StieltjesGamma[4] + StieltjesGamma[5] + 10 StieltjesGamma[2] (Log[2 Pi]^3 + 2 Zeta[3]) + 5 StieltjesGamma[1] (Log[2 Pi]^4 + 8 Log[2 Pi] Zeta[3]))) - 336 Pi^2 (Log[2 Pi]^5 - 30 Log[2 Pi]^2 StieltjesGamma[2] - 20 Log[2 Pi] StieltjesGamma[3] - 5 StieltjesGamma[4] + 20 Log[2 Pi]^2 Zeta[3] - 20 StieltjesGamma[1] (Log[2 Pi]^3 + 2 Zeta[3]) + 24 Zeta[5]) + 84 EulerGamma^2 (19 Pi^4 Log[2 Pi] + 40 Pi^2 (Log[2 Pi]^3 + 6 Log[2 Pi] StieltjesGamma[1] + 3 StieltjesGamma[2] + 2 Zeta[3]) + 48 (Log[2 Pi]^5 + 30 Log[2 Pi]^2 StieltjesGamma[2] + 20 Log[2 Pi] StieltjesGamma[3] + 5 StieltjesGamma[4] + 20 Log[2 Pi]^2 Zeta[3] + 20 StieltjesGamma[1] (Log[2 Pi]^3 + 2 Zeta[3]) + 24 Zeta[5])) - 192 (Log[2 Pi]^7 - 140 Log[2 Pi]^3 StieltjesGamma[3] - 105 Log[2 Pi]^2 StieltjesGamma[4] - 42 Log[2 Pi] StieltjesGamma[5] - 7 StieltjesGamma[6] + 70 Log[2 Pi]^4 Zeta[3] - 280 StieltjesGamma[3] Zeta[3] + 280 Log[2 Pi] Zeta[3]^2 - 105 StieltjesGamma[2] (Log[2 Pi]^4 + 8 Log[2 Pi] Zeta[3]) + 504 Log[2 Pi]^2 Zeta[5] - 42 StieltjesGamma[1] (Log[2 Pi]^5 + 20 Log[2 Pi]^2 Zeta[3] + 24 Zeta[5]) + 720 Zeta[7]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", "7", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "0", "]"]], "\[Equal]", RowBox[List[FractionBox["1", "384"], " ", RowBox[List["(", RowBox[List[RowBox[List["1152", " ", SuperscriptBox["EulerGamma", "7"]]], "+", RowBox[List["6720", " ", SuperscriptBox["EulerGamma", "6"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["275", " ", SuperscriptBox["\[Pi]", "6"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["1344", " ", SuperscriptBox["EulerGamma", "5"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["6", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["532", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "-", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "-", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["5040", " ", SuperscriptBox["EulerGamma", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "2", "]"]], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["56", " ", SuperscriptBox["EulerGamma", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"]]], "+", RowBox[List["120", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], "+", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], ")"]]]], "+", RowBox[List["240", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["6", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["168", " ", "EulerGamma", " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], ")"]]]], "+", RowBox[List["48", " ", RowBox[List["(", RowBox[List[RowBox[List["10", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["5", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "5", "]"]], "+", RowBox[List["10", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["336", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "-", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "-", RowBox[List["20", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "-", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "-", RowBox[List["20", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List["84", " ", SuperscriptBox["EulerGamma", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["48", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["192", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "7"], "-", RowBox[List["140", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "-", RowBox[List["105", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "-", RowBox[List["42", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "-", RowBox[List["7", " ", RowBox[List["StieltjesGamma", "[", "6", "]"]]]], "+", RowBox[List["70", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "-", RowBox[List["280", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["280", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "-", RowBox[List["105", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["504", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "-", RowBox[List["42", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List["720", " ", RowBox[List["Zeta", "[", "7", "]"]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> &#950; </mi> <semantics> <mrow> <mo> ( </mo> <mn> 7 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;7&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 384 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1344 </mn> <mo> &#8290; </mo> <msup> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mn> 5 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 532 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 5040 </mn> <mo> &#8290; </mo> <msup> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 56 </mn> <mo> &#8290; </mo> <msup> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 120 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 240 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 19 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 168 </mn> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 19 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 48 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 5 </mn> </msub> <mo> + </mo> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 336 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 20 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 84 </mn> <mo> &#8290; </mo> <msup> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 40 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 48 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 19 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 192 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 42 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 140 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 105 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 42 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 5 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 6 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 720 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 7 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;7&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 504 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 105 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 280 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 280 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 70 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 7 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 275 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 6 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 6720 </mn> <mo> &#8290; </mo> <msup> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mn> 6 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 1152 </mn> <mo> &#8290; </mo> <msup> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mn> 7 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <cn type='integer'> 0 </cn> </apply> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 7 </cn> </list> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 384 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1344 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 5 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 532 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -6 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5040 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 56 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 120 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 240 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 19 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 168 </cn> <eulergamma /> <apply> <plus /> <apply> <times /> <cn type='integer'> 19 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 5 </cn> </apply> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 336 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -20 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 84 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 19 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 192 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -42 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 140 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 105 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 42 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 720 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 504 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 105 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 280 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <power /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 280 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 70 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 7 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 275 </cn> <apply> <power /> <pi /> <cn type='integer'> 6 </cn> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6720 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 6 </cn> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1152 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 7 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", "7", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "0", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "384"], " ", RowBox[List["(", RowBox[List[RowBox[List["1152", " ", SuperscriptBox["EulerGamma", "7"]]], "+", RowBox[List["6720", " ", SuperscriptBox["EulerGamma", "6"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["275", " ", SuperscriptBox["\[Pi]", "6"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["1344", " ", SuperscriptBox["EulerGamma", "5"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["6", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["532", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "-", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "-", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["5040", " ", SuperscriptBox["EulerGamma", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "2", "]"]], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["56", " ", SuperscriptBox["EulerGamma", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"]]], "+", RowBox[List["120", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], "+", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], ")"]]]], "+", RowBox[List["240", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["6", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["168", " ", "EulerGamma", " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], ")"]]]], "+", RowBox[List["48", " ", RowBox[List["(", RowBox[List[RowBox[List["10", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["5", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "5", "]"]], "+", RowBox[List["10", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["336", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "-", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "-", RowBox[List["20", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "-", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "-", RowBox[List["20", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List["84", " ", SuperscriptBox["EulerGamma", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["48", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["192", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "7"], "-", RowBox[List["140", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "-", RowBox[List["105", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "-", RowBox[List["42", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "-", RowBox[List["7", " ", RowBox[List["StieltjesGamma", "[", "6", "]"]]]], "+", RowBox[List["70", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "-", RowBox[List["280", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["280", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "-", RowBox[List["105", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["504", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "-", RowBox[List["42", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List["720", " ", RowBox[List["Zeta", "[", "7", "]"]]]]]], ")"]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02