|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.01.20.0013.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Derivative[8][Zeta][0] == (7 EulerGamma^8)/2 - (11813 Pi^8)/23040 +
24 EulerGamma^7 Log[2 Pi] - (1/2) Log[2 Pi]^8 -
(275/96) Pi^6 (Log[2 Pi]^2 - 2 StieltjesGamma[1]) +
28 Log[2 Pi]^6 StieltjesGamma[1] + (7/6) EulerGamma^6
(5 Pi^2 + 60 Log[2 Pi]^2 + 24 StieltjesGamma[1]) +
84 Log[2 Pi]^5 StieltjesGamma[2] + 140 Log[2 Pi]^4 StieltjesGamma[3] +
140 Log[2 Pi]^3 StieltjesGamma[4] + 84 Log[2 Pi]^2 StieltjesGamma[5] +
28 Log[2 Pi] StieltjesGamma[6] + 4 StieltjesGamma[7] -
56 Log[2 Pi]^5 Zeta[3] + 1120 Log[2 Pi]^3 StieltjesGamma[1] Zeta[3] +
1680 Log[2 Pi]^2 StieltjesGamma[2] Zeta[3] +
1120 Log[2 Pi] StieltjesGamma[3] Zeta[3] + 280 StieltjesGamma[4] Zeta[3] -
560 Log[2 Pi]^2 Zeta[3]^2 + 1120 StieltjesGamma[1] Zeta[3]^2 +
28 EulerGamma^5 (Pi^2 Log[2 Pi] + 4 Log[2 Pi]^3 +
6 Log[2 Pi] StieltjesGamma[1] + 3 StieltjesGamma[2] + 8 Zeta[3]) -
(133/48) Pi^4 (Log[2 Pi]^4 - 12 Log[2 Pi]^2 StieltjesGamma[1] -
12 Log[2 Pi] StieltjesGamma[2] - 4 StieltjesGamma[3] +
8 Log[2 Pi] Zeta[3]) + (7/16) EulerGamma^4
(19 Pi^4 + 40 Pi^2 (3 Log[2 Pi]^2 + 2 StieltjesGamma[1]) +
80 (3 Log[2 Pi]^4 + 12 Log[2 Pi]^2 StieltjesGamma[1] +
12 Log[2 Pi] StieltjesGamma[2] + 4 StieltjesGamma[3] +
24 Log[2 Pi] Zeta[3])) - 672 Log[2 Pi]^3 Zeta[5] +
4032 Log[2 Pi] StieltjesGamma[1] Zeta[5] + 2016 StieltjesGamma[2] Zeta[5] -
1344 Zeta[3] Zeta[5] - (7/6) Pi^2 (Log[2 Pi]^6 -
60 Log[2 Pi]^2 StieltjesGamma[3] - 30 Log[2 Pi] StieltjesGamma[4] -
6 StieltjesGamma[5] + 40 Log[2 Pi]^3 Zeta[3] + 40 Zeta[3]^2 -
60 StieltjesGamma[2] (Log[2 Pi]^3 + 2 Zeta[3]) -
30 StieltjesGamma[1] (Log[2 Pi]^4 + 8 Log[2 Pi] Zeta[3]) +
144 Log[2 Pi] Zeta[5]) + (7/6) EulerGamma^3
(19 Pi^4 Log[2 Pi] + 20 Pi^2 (2 Log[2 Pi]^3 +
6 Log[2 Pi] StieltjesGamma[1] + 3 StieltjesGamma[2] + 4 Zeta[3]) +
24 (2 Log[2 Pi]^5 + 30 Log[2 Pi]^2 StieltjesGamma[2] +
20 Log[2 Pi] StieltjesGamma[3] + 5 StieltjesGamma[4] +
40 Log[2 Pi]^2 Zeta[3] + 20 StieltjesGamma[1]
(Log[2 Pi]^3 + 2 Zeta[3]) + 48 Zeta[5])) +
(1/96) EulerGamma^2 (275 Pi^6 + 1596 Pi^4 (Log[2 Pi]^2 +
2 StieltjesGamma[1]) + 1680 Pi^2 (Log[2 Pi]^4 +
12 Log[2 Pi]^2 StieltjesGamma[1] + 12 Log[2 Pi] StieltjesGamma[2] +
4 StieltjesGamma[3] + 8 Log[2 Pi] Zeta[3]) +
1344 (Log[2 Pi]^6 + 60 Log[2 Pi]^2 StieltjesGamma[3] +
30 Log[2 Pi] StieltjesGamma[4] + 6 StieltjesGamma[5] +
40 Log[2 Pi]^3 Zeta[3] + 40 Zeta[3]^2 + 60 StieltjesGamma[2]
(Log[2 Pi]^3 + 2 Zeta[3]) + 30 StieltjesGamma[1]
(Log[2 Pi]^4 + 8 Log[2 Pi] Zeta[3]) + 144 Log[2 Pi] Zeta[5])) +
(7/4) EulerGamma (19 Pi^4 (2 Log[2 Pi] StieltjesGamma[1] +
StieltjesGamma[2]) + 20 Pi^2 (6 Log[2 Pi]^2 StieltjesGamma[2] +
4 Log[2 Pi] StieltjesGamma[3] + StieltjesGamma[4] +
4 StieltjesGamma[1] (Log[2 Pi]^3 + 2 Zeta[3])) +
16 (20 Log[2 Pi]^3 StieltjesGamma[3] + 15 Log[2 Pi]^2 StieltjesGamma[4] +
6 Log[2 Pi] StieltjesGamma[5] + StieltjesGamma[6] +
40 StieltjesGamma[3] Zeta[3] + 15 StieltjesGamma[2]
(Log[2 Pi]^4 + 8 Log[2 Pi] Zeta[3]) + 6 StieltjesGamma[1]
(Log[2 Pi]^5 + 20 Log[2 Pi]^2 Zeta[3] + 24 Zeta[5]))) -
2880 Log[2 Pi] Zeta[7]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", "8", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "0", "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["7", " ", SuperscriptBox["EulerGamma", "8"]]], "2"], "-", FractionBox[RowBox[List["11813", " ", SuperscriptBox["\[Pi]", "8"]]], "23040"], "+", RowBox[List["24", " ", SuperscriptBox["EulerGamma", "7"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "8"]]], "-", RowBox[List[FractionBox["275", "96"], " ", SuperscriptBox["\[Pi]", "6"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "+", RowBox[List["28", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List[FractionBox["7", "6"], " ", SuperscriptBox["EulerGamma", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox["\[Pi]", "2"]]], "+", RowBox[List["60", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", RowBox[List["24", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "+", RowBox[List["84", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["140", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["140", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["84", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["28", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "6", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "7", "]"]]]], "-", RowBox[List["56", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["1120", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["1680", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["1120", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["280", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "-", RowBox[List["560", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["1120", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["28", " ", SuperscriptBox["EulerGamma", "5"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "-", RowBox[List[FractionBox["133", "48"], " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "-", RowBox[List["12", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "-", RowBox[List["12", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "-", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["7", "16"], " ", SuperscriptBox["EulerGamma", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"]]], "+", RowBox[List["40", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", RowBox[List["2", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "+", RowBox[List["80", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"]]], "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["12", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["24", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["672", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "+", RowBox[List["4032", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "+", RowBox[List["2016", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "-", RowBox[List["1344", " ", RowBox[List["Zeta", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "-", RowBox[List[FractionBox["7", "6"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"], "-", RowBox[List["60", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "-", RowBox[List["30", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "-", RowBox[List["6", " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "-", RowBox[List["60", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "-", RowBox[List["30", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["144", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["7", "6"], " ", SuperscriptBox["EulerGamma", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["20", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["24", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["48", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "96"], " ", SuperscriptBox["EulerGamma", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["275", " ", SuperscriptBox["\[Pi]", "6"]]], "+", RowBox[List["1596", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], "+", RowBox[List["2", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "+", RowBox[List["1680", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["12", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["1344", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"], "+", RowBox[List["60", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["30", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["6", " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["60", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["30", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["144", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["7", "4"], " ", "EulerGamma", " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], ")"]]]], "+", RowBox[List["20", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "4", "]"]], "+", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["16", " ", RowBox[List["(", RowBox[List[RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["15", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "6", "]"]], "+", RowBox[List["40", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["15", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["6", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["2880", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "7", "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> ζ </mi> <semantics> <mrow> <mo> ( </mo> <mn> 8 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "8", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 275 </mn> <mn> 96 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 6 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 28 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 6 </mn> </mfrac> <mo> ⁢ </mo> <msup> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> <mn> 6 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 84 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 140 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 140 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 84 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 5 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 28 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 6 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 7 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 28 </mn> <mo> ⁢ </mo> <msup> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> <mn> 5 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 133 </mn> <mn> 48 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 12 </mn> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 16 </mn> </mfrac> <mo> ⁢ </mo> <msup> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 80 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 19 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 6 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 30 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 30 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 5 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 144 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["5", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <msup> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 6 </mn> </mfrac> <mo> ⁢ </mo> <msup> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 30 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["5", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 19 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 96 </mn> </mfrac> <mo> ⁢ </mo> <msup> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1596 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 1680 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 1344 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 30 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 30 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 5 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 144 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["5", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <msup> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 275 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 6 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 19 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["5", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 5 </mn> </msub> </mrow> <mo> + </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 6 </mn> </msub> <mo> + </mo> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2880 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 7 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["7", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 4032 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["5", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 2016 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["5", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 1344 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["5", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 672 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["5", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 1120 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msup> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 560 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1120 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 1680 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 1120 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 280 </mn> <mo> ⁢ </mo> <msub> <semantics> <mi> γ </mi> <annotation encoding='Mathematica'> TagBox["\[Gamma]", StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 56 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 8 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <msup> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> <mn> 7 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 11813 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 8 </mn> </msup> </mrow> <mn> 23040 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <msup> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> <mn> 8 </mn> </msup> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <cn type='integer'> 0 </cn> </apply> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 8 </cn> </list> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 275 <sep /> 96 </cn> </apply> <apply> <power /> <pi /> <cn type='integer'> 6 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 28 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 7 <sep /> 6 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 6 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 84 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 140 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 140 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 84 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 28 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 28 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 5 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 133 <sep /> 48 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -12 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 7 <sep /> 16 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 80 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 19 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 7 <sep /> 6 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -30 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 7 <sep /> 6 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 19 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 96 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1596 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1680 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1344 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 275 </cn> <apply> <power /> <pi /> <cn type='integer'> 6 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 7 <sep /> 4 </cn> <eulergamma /> <apply> <plus /> <apply> <times /> <cn type='integer'> 19 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 6 </cn> </apply> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2880 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4032 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2016 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1344 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 672 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1120 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 560 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1120 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1680 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1120 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 280 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 56 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 7 </cn> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11813 </cn> <apply> <power /> <pi /> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <cn type='integer'> 23040 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", "8", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "0", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["7", " ", SuperscriptBox["EulerGamma", "8"]]], "2"], "-", FractionBox[RowBox[List["11813", " ", SuperscriptBox["\[Pi]", "8"]]], "23040"], "+", RowBox[List["24", " ", SuperscriptBox["EulerGamma", "7"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "8"]]], "-", RowBox[List[FractionBox["275", "96"], " ", SuperscriptBox["\[Pi]", "6"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], "-", RowBox[List["2", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "+", RowBox[List["28", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List[FractionBox["7", "6"], " ", SuperscriptBox["EulerGamma", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox["\[Pi]", "2"]]], "+", RowBox[List["60", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", RowBox[List["24", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "+", RowBox[List["84", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["140", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["140", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["84", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["28", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "6", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "7", "]"]]]], "-", RowBox[List["56", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["1120", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["1680", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["1120", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["280", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "-", RowBox[List["560", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["1120", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["28", " ", SuperscriptBox["EulerGamma", "5"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "-", RowBox[List[FractionBox["133", "48"], " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "-", RowBox[List["12", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "-", RowBox[List["12", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "-", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["7", "16"], " ", SuperscriptBox["EulerGamma", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"]]], "+", RowBox[List["40", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", RowBox[List["2", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "+", RowBox[List["80", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"]]], "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["12", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["24", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["672", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "+", RowBox[List["4032", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "+", RowBox[List["2016", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "-", RowBox[List["1344", " ", RowBox[List["Zeta", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "-", RowBox[List[FractionBox["7", "6"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"], "-", RowBox[List["60", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "-", RowBox[List["30", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "-", RowBox[List["6", " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "-", RowBox[List["60", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "-", RowBox[List["30", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["144", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["7", "6"], " ", SuperscriptBox["EulerGamma", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["20", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["24", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["48", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "96"], " ", SuperscriptBox["EulerGamma", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["275", " ", SuperscriptBox["\[Pi]", "6"]]], "+", RowBox[List["1596", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], "+", RowBox[List["2", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]]]], ")"]]]], "+", RowBox[List["1680", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["12", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["1344", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"], "+", RowBox[List["60", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["30", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["6", " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["60", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["30", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["144", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["7", "4"], " ", "EulerGamma", " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], ")"]]]], "+", RowBox[List["20", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "4", "]"]], "+", RowBox[List["4", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["16", " ", RowBox[List["(", RowBox[List[RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["15", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "6", "]"]], "+", RowBox[List["40", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["15", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["6", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["2880", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "7", "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|