Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Zeta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > Zeta[s] > Differentiation > Low-order differentiation > Derivatives at zero





http://functions.wolfram.com/10.01.20.0014.01









  


  










Input Form





Derivative[9][Zeta][0] == 4 EulerGamma^9 + (63/2) EulerGamma^8 Log[2 Pi] - (11813 Pi^8 Log[2 Pi])/2560 - (1/2) Log[2 Pi]^9 + 36 Log[2 Pi]^7 StieltjesGamma[1] + 9 EulerGamma^7 (Pi^2 + 4 (3 Log[2 Pi]^2 + StieltjesGamma[1])) + 126 Log[2 Pi]^6 StieltjesGamma[2] + 252 Log[2 Pi]^5 StieltjesGamma[3] + 315 Log[2 Pi]^4 StieltjesGamma[4] + 252 Log[2 Pi]^3 StieltjesGamma[5] + 126 Log[2 Pi]^2 StieltjesGamma[6] + 36 Log[2 Pi] StieltjesGamma[7] + (9 StieltjesGamma[8])/2 - 84 Log[2 Pi]^6 Zeta[3] + 2520 Log[2 Pi]^4 StieltjesGamma[1] Zeta[3] + 5040 Log[2 Pi]^3 StieltjesGamma[2] Zeta[3] + 5040 Log[2 Pi]^2 StieltjesGamma[3] Zeta[3] + 2520 Log[2 Pi] StieltjesGamma[4] Zeta[3] + 504 StieltjesGamma[5] Zeta[3] - 1680 Log[2 Pi]^3 Zeta[3]^2 + 10080 Log[2 Pi] StieltjesGamma[1] Zeta[3]^2 + 5040 StieltjesGamma[2] Zeta[3]^2 - 1120 Zeta[3]^3 - (275/32) Pi^6 (Log[2 Pi]^3 - 6 Log[2 Pi] StieltjesGamma[1] - 3 StieltjesGamma[2] + 2 Zeta[3]) + (21/2) EulerGamma^6 (5 Pi^2 Log[2 Pi] + 4 (5 Log[2 Pi]^3 + 6 Log[2 Pi] StieltjesGamma[1] + 3 StieltjesGamma[2] + 10 Zeta[3])) + (21/20) EulerGamma^5 (19 Pi^4 + 60 Pi^2 (2 Log[2 Pi]^2 + StieltjesGamma[1]) + 240 (Log[2 Pi]^4 + 3 Log[2 Pi]^2 StieltjesGamma[1] + 3 Log[2 Pi] StieltjesGamma[2] + StieltjesGamma[3] + 8 Log[2 Pi] Zeta[3])) - 1512 Log[2 Pi]^4 Zeta[5] + 18144 Log[2 Pi]^2 StieltjesGamma[1] Zeta[5] + 18144 Log[2 Pi] StieltjesGamma[2] Zeta[5] + 6048 StieltjesGamma[3] Zeta[5] - 12096 Log[2 Pi] Zeta[3] Zeta[5] - (399/80) Pi^4 (Log[2 Pi]^5 - 30 Log[2 Pi]^2 StieltjesGamma[2] - 20 Log[2 Pi] StieltjesGamma[3] - 5 StieltjesGamma[4] + 20 Log[2 Pi]^2 Zeta[3] - 20 StieltjesGamma[1] (Log[2 Pi]^3 + 2 Zeta[3]) + 24 Zeta[5]) + (63/16) EulerGamma^4 (19 Pi^4 Log[2 Pi] + 40 Pi^2 (Log[2 Pi]^3 + 2 Log[2 Pi] StieltjesGamma[1] + StieltjesGamma[2] + 2 Zeta[3]) + 16 (3 Log[2 Pi]^5 + 30 Log[2 Pi]^2 StieltjesGamma[2] + 20 Log[2 Pi] StieltjesGamma[3] + 5 StieltjesGamma[4] + 60 Log[2 Pi]^2 Zeta[3] + 20 StieltjesGamma[1] (Log[2 Pi]^3 + 2 Zeta[3]) + 72 Zeta[5])) + (1/16) EulerGamma^3 (275 Pi^6 + 1596 Pi^4 (Log[2 Pi]^2 + StieltjesGamma[1]) + 1680 Pi^2 (Log[2 Pi]^4 + 6 Log[2 Pi]^2 StieltjesGamma[1] + 6 Log[2 Pi] StieltjesGamma[2] + 2 StieltjesGamma[3] + 8 Log[2 Pi] Zeta[3]) + 1344 (Log[2 Pi]^6 + 30 Log[2 Pi]^2 StieltjesGamma[3] + 15 Log[2 Pi] StieltjesGamma[4] + 3 StieltjesGamma[5] + 40 Log[2 Pi]^3 Zeta[3] + 40 Zeta[3]^2 + 30 StieltjesGamma[2] (Log[2 Pi]^3 + 2 Zeta[3]) + 15 StieltjesGamma[1] (Log[2 Pi]^4 + 8 Log[2 Pi] Zeta[3]) + 144 Log[2 Pi] Zeta[5])) + (3/16) EulerGamma (275 Pi^6 StieltjesGamma[1] + 532 Pi^4 (3 Log[2 Pi]^2 StieltjesGamma[1] + 3 Log[2 Pi] StieltjesGamma[2] + StieltjesGamma[3]) + 336 Pi^2 (10 Log[2 Pi]^2 StieltjesGamma[3] + 5 Log[2 Pi] StieltjesGamma[4] + StieltjesGamma[5] + 10 StieltjesGamma[2] (Log[2 Pi]^3 + 2 Zeta[3]) + 5 StieltjesGamma[1] (Log[2 Pi]^4 + 8 Log[2 Pi] Zeta[3])) + 192 (35 Log[2 Pi]^4 StieltjesGamma[3] + 35 Log[2 Pi]^3 StieltjesGamma[4] + 21 Log[2 Pi]^2 StieltjesGamma[5] + 7 Log[2 Pi] StieltjesGamma[6] + StieltjesGamma[7] + 280 Log[2 Pi] StieltjesGamma[3] Zeta[3] + 70 StieltjesGamma[4] Zeta[3] + 21 StieltjesGamma[2] (Log[2 Pi]^5 + 20 Log[2 Pi]^2 Zeta[3] + 24 Zeta[5]) + 7 StieltjesGamma[1] (Log[2 Pi]^6 + 40 Log[2 Pi]^3 Zeta[3] + 40 Zeta[3]^2 + 144 Log[2 Pi] Zeta[5]))) - 12960 Log[2 Pi]^2 Zeta[7] + 25920 StieltjesGamma[1] Zeta[7] - (3/2) Pi^2 (Log[2 Pi]^7 - 140 Log[2 Pi]^3 StieltjesGamma[3] - 105 Log[2 Pi]^2 StieltjesGamma[4] - 42 Log[2 Pi] StieltjesGamma[5] - 7 StieltjesGamma[6] + 70 Log[2 Pi]^4 Zeta[3] - 280 StieltjesGamma[3] Zeta[3] + 280 Log[2 Pi] Zeta[3]^2 - 105 StieltjesGamma[2] (Log[2 Pi]^4 + 8 Log[2 Pi] Zeta[3]) + 504 Log[2 Pi]^2 Zeta[5] - 42 StieltjesGamma[1] (Log[2 Pi]^5 + 20 Log[2 Pi]^2 Zeta[3] + 24 Zeta[5]) + 720 Zeta[7]) + (3/32) EulerGamma^2 (275 Pi^6 Log[2 Pi] + 532 Pi^4 (Log[2 Pi]^3 + 6 Log[2 Pi] StieltjesGamma[1] + 3 StieltjesGamma[2] + 2 Zeta[3]) + 336 Pi^2 (Log[2 Pi]^5 + 30 Log[2 Pi]^2 StieltjesGamma[2] + 20 Log[2 Pi] StieltjesGamma[3] + 5 StieltjesGamma[4] + 20 Log[2 Pi]^2 Zeta[3] + 20 StieltjesGamma[1] (Log[2 Pi]^3 + 2 Zeta[3]) + 24 Zeta[5]) + 192 (Log[2 Pi]^7 + 140 Log[2 Pi]^3 StieltjesGamma[3] + 105 Log[2 Pi]^2 StieltjesGamma[4] + 42 Log[2 Pi] StieltjesGamma[5] + 7 StieltjesGamma[6] + 70 Log[2 Pi]^4 Zeta[3] + 280 StieltjesGamma[3] Zeta[3] + 280 Log[2 Pi] Zeta[3]^2 + 105 StieltjesGamma[2] (Log[2 Pi]^4 + 8 Log[2 Pi] Zeta[3]) + 504 Log[2 Pi]^2 Zeta[5] + 42 StieltjesGamma[1] (Log[2 Pi]^5 + 20 Log[2 Pi]^2 Zeta[3] + 24 Zeta[5]) + 720 Zeta[7])) - 20160 Zeta[9]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", "9", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "0", "]"]], "\[Equal]", RowBox[List[RowBox[List["4", " ", SuperscriptBox["EulerGamma", "9"]]], "+", RowBox[List[FractionBox["63", "2"], " ", SuperscriptBox["EulerGamma", "8"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", FractionBox[RowBox[List["11813", " ", SuperscriptBox["\[Pi]", "8"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "2560"], "-", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "9"]]], "+", RowBox[List["36", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "7"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["9", " ", SuperscriptBox["EulerGamma", "7"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["126", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["252", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["315", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["252", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["126", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "6", "]"]]]], "+", RowBox[List["36", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "7", "]"]]]], "+", FractionBox[RowBox[List["9", " ", RowBox[List["StieltjesGamma", "[", "8", "]"]]]], "2"], "-", RowBox[List["84", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["2520", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["5040", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["5040", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["2520", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["504", " ", RowBox[List["StieltjesGamma", "[", "5", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "-", RowBox[List["1680", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["10080", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["5040", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "-", RowBox[List["1120", " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "3"]]], "-", RowBox[List[FractionBox["275", "32"], " ", SuperscriptBox["\[Pi]", "6"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "-", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "-", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["21", "2"], " ", SuperscriptBox["EulerGamma", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["10", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["21", "20"], " ", SuperscriptBox["EulerGamma", "5"], " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"]]], "+", RowBox[List["60", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], ")"]]]], "+", RowBox[List["240", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "3", "]"]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["1512", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "+", RowBox[List["18144", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "+", RowBox[List["18144", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "+", RowBox[List["6048", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "-", RowBox[List["12096", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "-", RowBox[List[FractionBox["399", "80"], " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "-", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "-", RowBox[List["20", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "-", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "-", RowBox[List["20", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["63", "16"], " ", SuperscriptBox["EulerGamma", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "2", "]"]], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["16", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["60", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["72", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "16"], " ", SuperscriptBox["EulerGamma", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["275", " ", SuperscriptBox["\[Pi]", "6"]]], "+", RowBox[List["1596", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], "+", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], ")"]]]], "+", RowBox[List["1680", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["6", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["1344", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["15", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["30", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["15", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["144", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["3", "16"], " ", "EulerGamma", " ", RowBox[List["(", RowBox[List[RowBox[List["275", " ", SuperscriptBox["\[Pi]", "6"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["532", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], ")"]]]], "+", RowBox[List["336", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["10", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["5", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "5", "]"]], "+", RowBox[List["10", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["192", " ", RowBox[List["(", RowBox[List[RowBox[List["35", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["35", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["21", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["7", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "6", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "7", "]"]], "+", RowBox[List["280", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["70", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["21", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List["7", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["144", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["12960", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "7", "]"]]]], "+", RowBox[List["25920", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["Zeta", "[", "7", "]"]]]], "-", RowBox[List[FractionBox["3", "2"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "7"], "-", RowBox[List["140", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "-", RowBox[List["105", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "-", RowBox[List["42", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "-", RowBox[List["7", " ", RowBox[List["StieltjesGamma", "[", "6", "]"]]]], "+", RowBox[List["70", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "-", RowBox[List["280", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["280", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "-", RowBox[List["105", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["504", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "-", RowBox[List["42", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List["720", " ", RowBox[List["Zeta", "[", "7", "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["3", "32"], " ", SuperscriptBox["EulerGamma", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["275", " ", SuperscriptBox["\[Pi]", "6"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["532", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["336", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List["192", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "7"], "+", RowBox[List["140", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["105", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["42", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["7", " ", RowBox[List["StieltjesGamma", "[", "6", "]"]]]], "+", RowBox[List["70", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["280", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["280", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["105", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["504", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "+", RowBox[List["42", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List["720", " ", RowBox[List["Zeta", "[", "7", "]"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["20160", " ", RowBox[List["Zeta", "[", "9", "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> &#950; </mi> <semantics> <mrow> <mo> ( </mo> <mn> 9 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;9&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mn> 25920 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 7 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;7&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 18144 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 10080 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2520 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 7 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mn> 7 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 126 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 252 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 315 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 252 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 5 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 126 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 6 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 7 </mn> </msub> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 8 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 275 </mn> <mn> 32 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 6 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 21 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mn> 6 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 21 </mn> <mn> 20 </mn> </mfrac> <mo> &#8290; </mo> <msup> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mn> 5 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 60 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 240 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 19 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 399 </mn> <mn> 80 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 20 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 63 </mn> <mn> 16 </mn> </mfrac> <mo> &#8290; </mo> <msup> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 40 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 60 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 19 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 16 </mn> </mfrac> <mo> &#8290; </mo> <msup> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1596 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 1680 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 1344 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 5 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 144 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 275 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 6 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 16 </mn> </mfrac> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 275 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 6 </mn> </msup> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 532 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 336 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 5 </mn> </msub> <mo> + </mo> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 192 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 144 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 35 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 35 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 21 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 5 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 6 </mn> </msub> </mrow> <mo> + </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 7 </mn> </msub> <mo> + </mo> <mrow> <mn> 21 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 280 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 70 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 42 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 140 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 105 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 42 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 5 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 6 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 720 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 7 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;7&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 504 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 105 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 280 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 280 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 70 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 7 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 32 </mn> </mfrac> <mo> &#8290; </mo> <msup> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 532 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 336 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 192 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 42 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 140 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 105 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 42 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 5 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 6 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 720 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 7 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;7&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 504 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 105 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 280 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 280 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 70 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 7 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 275 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 6 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 20160 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 9 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;9&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 12960 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 7 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;7&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 18144 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 6048 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 12096 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 1512 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;5&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 1120 </mn> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5040 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1680 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5040 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 5040 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 2520 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 4 </mn> </msub> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 504 </mn> <mo> &#8290; </mo> <msub> <semantics> <mi> &#947; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Gamma]&quot;, StieltjesGamma] </annotation> </semantics> <mn> 5 </mn> </msub> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 84 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 9 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 11813 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 8 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 2560 </mn> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 63 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mn> 8 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mn> 9 </mn> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <cn type='integer'> 0 </cn> </apply> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 9 </cn> </list> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 25920 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 7 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 18144 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10080 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <power /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2520 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 7 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 7 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 126 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 252 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 315 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 252 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 126 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 275 <sep /> 32 </cn> <apply> <power /> <pi /> <cn type='integer'> 6 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -6 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 21 <sep /> 2 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 6 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 21 <sep /> 20 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 5 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 240 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 19 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 399 <sep /> 80 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -20 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 63 <sep /> 16 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 72 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 19 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 16 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1596 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1680 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1344 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 275 </cn> <apply> <power /> <pi /> <cn type='integer'> 6 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 3 <sep /> 16 </cn> <eulergamma /> <apply> <plus /> <apply> <times /> <cn type='integer'> 275 </cn> <apply> <power /> <pi /> <cn type='integer'> 6 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 532 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 336 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 5 </cn> </apply> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 192 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 35 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 35 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 21 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 7 </cn> </apply> <apply> <times /> <cn type='integer'> 21 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 280 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 70 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -42 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 140 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 105 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 42 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 720 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 504 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 105 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 280 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <power /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 280 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 70 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 7 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 3 <sep /> 32 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 532 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 336 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 192 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 42 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 140 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 105 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 42 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 720 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 504 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 105 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 280 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <power /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 280 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 70 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 275 </cn> <apply> <power /> <pi /> <cn type='integer'> 6 </cn> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 20160 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12960 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 18144 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6048 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12096 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1512 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1120 </cn> <apply> <power /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5040 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1680 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5040 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5040 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2520 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 504 </cn> <apply> <ci> StieltjesGamma </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 84 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11813 </cn> <apply> <power /> <pi /> <cn type='integer'> 8 </cn> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> <apply> <power /> <cn type='integer'> 2560 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 63 <sep /> 2 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 8 </cn> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <eulergamma /> <cn type='integer'> 9 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", "9", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "0", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["4", " ", SuperscriptBox["EulerGamma", "9"]]], "+", RowBox[List[FractionBox["63", "2"], " ", SuperscriptBox["EulerGamma", "8"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", FractionBox[RowBox[List["11813", " ", SuperscriptBox["\[Pi]", "8"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "2560"], "-", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "9"]]], "+", RowBox[List["36", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "7"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["9", " ", SuperscriptBox["EulerGamma", "7"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["126", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["252", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["315", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["252", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["126", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "6", "]"]]]], "+", RowBox[List["36", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "7", "]"]]]], "+", FractionBox[RowBox[List["9", " ", RowBox[List["StieltjesGamma", "[", "8", "]"]]]], "2"], "-", RowBox[List["84", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["2520", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["5040", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["5040", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["2520", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["504", " ", RowBox[List["StieltjesGamma", "[", "5", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "-", RowBox[List["1680", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["10080", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["5040", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "-", RowBox[List["1120", " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "3"]]], "-", RowBox[List[FractionBox["275", "32"], " ", SuperscriptBox["\[Pi]", "6"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "-", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "-", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["21", "2"], " ", SuperscriptBox["EulerGamma", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["10", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["21", "20"], " ", SuperscriptBox["EulerGamma", "5"], " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"]]], "+", RowBox[List["60", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"]]], "+", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], ")"]]]], "+", RowBox[List["240", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "3", "]"]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["1512", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "+", RowBox[List["18144", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "+", RowBox[List["18144", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "+", RowBox[List["6048", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "-", RowBox[List["12096", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "-", RowBox[List[FractionBox["399", "80"], " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "-", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "-", RowBox[List["20", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "-", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "-", RowBox[List["20", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["63", "16"], " ", SuperscriptBox["EulerGamma", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["19", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "2", "]"]], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["16", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["60", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["72", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "16"], " ", SuperscriptBox["EulerGamma", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["275", " ", SuperscriptBox["\[Pi]", "6"]]], "+", RowBox[List["1596", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], "+", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], ")"]]]], "+", RowBox[List["1680", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["6", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["1344", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["15", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["30", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["15", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["144", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["3", "16"], " ", "EulerGamma", " ", RowBox[List["(", RowBox[List[RowBox[List["275", " ", SuperscriptBox["\[Pi]", "6"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["532", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], ")"]]]], "+", RowBox[List["336", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["10", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["5", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "5", "]"]], "+", RowBox[List["10", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["192", " ", RowBox[List["(", RowBox[List[RowBox[List["35", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["35", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["21", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["7", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "6", "]"]]]], "+", RowBox[List["StieltjesGamma", "[", "7", "]"]], "+", RowBox[List["280", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["70", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["21", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List["7", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "6"], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["40", " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["144", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["12960", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "7", "]"]]]], "+", RowBox[List["25920", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["Zeta", "[", "7", "]"]]]], "-", RowBox[List[FractionBox["3", "2"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "7"], "-", RowBox[List["140", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "-", RowBox[List["105", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "-", RowBox[List["42", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "-", RowBox[List["7", " ", RowBox[List["StieltjesGamma", "[", "6", "]"]]]], "+", RowBox[List["70", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "-", RowBox[List["280", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["280", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "-", RowBox[List["105", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["504", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "-", RowBox[List["42", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List["720", " ", RowBox[List["Zeta", "[", "7", "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["3", "32"], " ", SuperscriptBox["EulerGamma", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["275", " ", SuperscriptBox["\[Pi]", "6"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["532", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "1", "]"]]]], "+", RowBox[List["3", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["336", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "2", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["5", " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["20", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], "+", RowBox[List["2", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List["192", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "7"], "+", RowBox[List["140", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "3"], " ", RowBox[List["StieltjesGamma", "[", "3", "]"]]]], "+", RowBox[List["105", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["StieltjesGamma", "[", "4", "]"]]]], "+", RowBox[List["42", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["StieltjesGamma", "[", "5", "]"]]]], "+", RowBox[List["7", " ", RowBox[List["StieltjesGamma", "[", "6", "]"]]]], "+", RowBox[List["70", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["280", " ", RowBox[List["StieltjesGamma", "[", "3", "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["280", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", SuperscriptBox[RowBox[List["Zeta", "[", "3", "]"]], "2"]]], "+", RowBox[List["105", " ", RowBox[List["StieltjesGamma", "[", "2", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "4"], "+", RowBox[List["8", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]]]], "+", RowBox[List["504", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "5", "]"]]]], "+", RowBox[List["42", " ", RowBox[List["StieltjesGamma", "[", "1", "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "5"], "+", RowBox[List["20", " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["Zeta", "[", "3", "]"]]]], "+", RowBox[List["24", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]]]], "+", RowBox[List["720", " ", RowBox[List["Zeta", "[", "7", "]"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["20160", " ", RowBox[List["Zeta", "[", "9", "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02