|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.01.20.0018.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Derivative[1][Zeta][-3] == -(11/720) - Log[Glaisher]/2 - (1/8) Log[2 Pi] -
6 PolyGamma[-5, 1] + 3 PolyGamma[-4, 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["-", "3"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["11", "720"]]], "-", FractionBox[RowBox[List["Log", "[", "Glaisher", "]"]], "2"], "-", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["6", " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "5"]], ",", "1"]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "4"]], ",", "1"]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> ζ </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <semantics> <mi> A </mi> <annotation encoding='Mathematica'> TagBox["A", Function[List[], Glaisher]] </annotation> </semantics> <mo> ) </mo> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 720 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <cn type='integer'> -3 </cn> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <ci> Glaisher </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> -5 </cn> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> -4 </cn> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 720 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["-", "3"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox["11", "720"]]], "-", FractionBox[RowBox[List["Log", "[", "Glaisher", "]"]], "2"], "-", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["6", " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "5"]], ",", "1"]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "4"]], ",", "1"]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|