|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.01.20.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[Zeta[s], {s, \[Alpha]}] == 1/(s^\[Alpha] Gamma[1 - \[Alpha]]) +
Sum[(((-s) Log[k])^\[Alpha] GammaRegularized[-\[Alpha], 0, (-s) Log[k]])/
((-s)^\[Alpha] k^s), {k, 2, Infinity}] /; Re[s] > 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["s", ",", "\[Alpha]"]], "}"]]], RowBox[List["Zeta", "[", "s", "]"]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["s", RowBox[List["-", "\[Alpha]"]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "s"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "s"]], " ", RowBox[List["Log", "[", "k", "]"]]]], ")"]], "\[Alpha]"], RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", "0", ",", RowBox[List[RowBox[List["-", "s"]], " ", RowBox[List["Log", "[", "k", "]"]]]]]], "]"]]]], SuperscriptBox["k", "s"]]]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "s", "]"]], ">", "1"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> α </mi> </msup> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["s", Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> s </mi> <mi> α </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mfrac> <msup> <mi> s </mi> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> α </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> α </mi> </msup> <mo> ⁢ </mo> <mrow> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mi> k </mi> <mi> s </mi> </msup> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> s </ci> <degree> <ci> α </ci> </degree> </bvar> <apply> <ci> Zeta </ci> <ci> s </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <ln /> <ci> k </ci> </apply> </apply> <ci> α </ci> </apply> <apply> <ci> GammaRegularized </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 0 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <ln /> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> k </ci> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <gt /> <apply> <real /> <ci> s </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["s_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["Zeta", "[", "s_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[SuperscriptBox["s", RowBox[List["-", "\[Alpha]"]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "s"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "s"]], " ", RowBox[List["Log", "[", "k", "]"]]]], ")"]], "\[Alpha]"], " ", RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", "0", ",", RowBox[List[RowBox[List["-", "s"]], " ", RowBox[List["Log", "[", "k", "]"]]]]]], "]"]]]], SuperscriptBox["k", "s"]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "s", "]"]], ">", "1"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|