Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Zeta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > Zeta[s] > Integration > Definite integration





http://functions.wolfram.com/10.01.21.0003.01









  


  










Input Form





Integrate[\[LeftBracketingBar] ((1 - 2^(1 - (\[Sigma] + I t))) Zeta[\[Sigma] + I t])/(\[Sigma] + I t) \[RightBracketingBar], {t, -Infinity, Infinity}] == (Pi/\[Sigma]) (1 - 2^(1 - 2 \[Sigma])) Zeta[2 \[Sigma]] /; Element[\[Sigma], Reals] && \[Sigma] > 0 && Element[t, Reals]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], "\[Infinity]"], RowBox[List[RowBox[List["\[LeftBracketingBar]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["(", RowBox[List["\[Sigma]", "+", RowBox[List["\[ImaginaryI]", " ", "t"]]]], ")"]]]]]]], ")"]], RowBox[List["Zeta", "[", RowBox[List["\[Sigma]", "+", RowBox[List["\[ImaginaryI]", " ", "t"]]]], "]"]]]], RowBox[List["\[Sigma]", "+", RowBox[List["\[ImaginaryI]", " ", "t"]]]]], "\[RightBracketingBar]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[FractionBox["\[Pi]", "\[Sigma]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["2", "\[Sigma]"]]]]]]], ")"]], RowBox[List["Zeta", "[", RowBox[List["2", "\[Sigma]"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["\[Sigma]", "\[Element]", "Reals"]], "\[And]", RowBox[List["\[Sigma]", ">", "0"]], "\[And]", RowBox[List["t", "\[Element]", "Reals"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mrow> <mo> - </mo> <mi> &#8734; </mi> </mrow> <mi> &#8734; </mi> </msubsup> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> t </mi> </mrow> <mo> + </mo> <mi> &#963; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> t </mi> </mrow> <mo> + </mo> <mi> &#963; </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[RowBox[List[RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;t&quot;]], &quot;+&quot;, &quot;\[Sigma]&quot;]], Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> t </mi> </mrow> <mo> + </mo> <mi> &#963; </mi> </mrow> </mfrac> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#963; </mi> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#963; </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Sigma]&quot;]], Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mi> &#963; </mi> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> &#963; </mi> <mo> &#8712; </mo> <msup> <mi> &#8477; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> t </mi> <mo> &#8712; </mo> <mi> &#8477; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <abs /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> t </ci> </apply> <ci> &#963; </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> t </ci> </apply> <ci> &#963; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> t </ci> </apply> <ci> &#963; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#963; </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#963; </ci> </apply> </apply> <apply> <power /> <ci> &#963; </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> &#963; </ci> <apply> <ci> SuperPlus </ci> <ci> &#8477; </ci> </apply> </apply> <apply> <in /> <ci> t </ci> <ci> &#8477; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], "\[Infinity]"], RowBox[List[RowBox[List["\[LeftBracketingBar]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["(", RowBox[List["\[Sigma]_", "+", RowBox[List["\[ImaginaryI]", " ", "t_"]]]], ")"]]]]]]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List["\[Sigma]_", "+", RowBox[List["\[ImaginaryI]", " ", "t_"]]]], "]"]]]], RowBox[List["\[Sigma]_", "+", RowBox[List["\[ImaginaryI]", " ", "t_"]]]]], "\[RightBracketingBar]"]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["2", " ", "\[Sigma]"]]]]]]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List["2", " ", "\[Sigma]"]], "]"]]]], "\[Sigma]"], "/;", RowBox[List[RowBox[List["\[Sigma]", "\[Element]", "Reals"]], "&&", RowBox[List["\[Sigma]", ">", "0"]], "&&", RowBox[List["t", "\[Element]", "Reals"]]]]]]]]]]










References





A. Ivić, "Some Identities for the Riemann Zeta Function", math.NT/0305219, (2003) http://arXiv.org/abs/math.NT/0305219










Date Added to functions.wolfram.com (modification date)





2003-08-21