|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.02.02.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zeta[s, -n] == Sum[1/((k - n)^2)^(s/2), {k, 0, n - 1}] +
Sum[1/((k - n)^2)^(s/2), {k, n + 1, Infinity}] /;
Element[n, Integers] && n >= 0 && Re[s] > 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Zeta", "[", RowBox[List["s", ",", RowBox[List["-", "n"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox["1", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], "2"], ")"]], RowBox[List["s", "/", "2"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["n", "+", "1"]]]], "\[Infinity]"], FractionBox["1", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], "2"], ")"]], RowBox[List["s", "/", "2"]]]]]]]]]], "/;", RowBox[List[RowBox[List["Element", "[", RowBox[List["n", ",", "Integers"]], "]"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "s", "]"]], ">", "1"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["s", Rule[Editable, True]], ",", RowBox[List["-", "n"]]]], ")"]], InterpretTemplate[Function[List[$CellContext`a, $CellContext`b], Zeta[$CellContext`a, $CellContext`b]]]], InterpretTemplate[Function[List[$CellContext`a, $CellContext`b, $CellContext`c], LerchPhi[$CellContext`a, $CellContext`b, $CellContext`c]]]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mi> s </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mi> s </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> </mrow> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["s", Rule[Editable, True]], ",", RowBox[List["-", "n"]]]], ")"]], InterpretTemplate[Function[List[$CellContext`a, $CellContext`b], Zeta[$CellContext`a, $CellContext`b]]]], InterpretTemplate[Function[List[$CellContext`a, $CellContext`b, $CellContext`c], LerchPhi[$CellContext`a, $CellContext`b, $CellContext`c]]]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mi> s </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mi> s </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> </mrow> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Zeta", "[", RowBox[List["s_", ",", RowBox[List["-", "n_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox["1", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], "2"], ")"]], RowBox[List["s", "/", "2"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["n", "+", "1"]]]], "\[Infinity]"], FractionBox["1", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], "2"], ")"]], RowBox[List["s", "/", "2"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", "s", "]"]], ">", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|