Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Zeta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > Zeta[s,a] > Series representations > Asymptotic series expansions > For zeta(+-n,a) by a





http://functions.wolfram.com/10.02.06.0049.01









  


  










Input Form





Zeta[n, a] \[Proportional] ((-1)^n/(n - 1)!) PolyGamma[n - 1, a] UnitStep[n - 1] - (UnitStep[-n]/(1 - n)) BernoulliB[1 - n, a] + Sum[((k + a)^2)^(-n/2) - (k + a)^(-n), {k, 0, Floor[-Re[a]]}] /; (Abs[a] -> Infinity) && Element[n, Integers] && n != 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Zeta", "[", RowBox[List["n", ",", "a"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "a"]], "]"]], RowBox[List["UnitStep", "[", RowBox[List["n", "-", "1"]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["UnitStep", "[", RowBox[List["-", "n"]], "]"]], RowBox[List["1", "-", "n"]]], RowBox[List["BernoulliB", "[", RowBox[List[RowBox[List["1", "-", "n"]], ",", "a"]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "a"]], ")"]], "2"], ")"]], RowBox[List[RowBox[List["-", "n"]], "/", "2"]]], "-", SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "a"]], ")"]], RowBox[List["-", "n"]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "a", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[NotEqual]", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[TagBox[&quot;n&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mfrac> <mrow> <mtext> </mtext> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msub> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </mfrac> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> a </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8800; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> Zeta </ci> <ci> n </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </uplimit> <apply> <plus /> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> UnitStep </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <apply> <ci> BernoulliB </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> UnitStep </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> a </ci> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> a </ci> </apply> <infinity /> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> <apply> <neq /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Zeta", "[", RowBox[List["n_", ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "a"]], "]"]], " ", RowBox[List["UnitStep", "[", RowBox[List["n", "-", "1"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], "-", FractionBox[RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["-", "n"]], "]"]], " ", RowBox[List["BernoulliB", "[", RowBox[List[RowBox[List["1", "-", "n"]], ",", "a"]], "]"]]]], RowBox[List["1", "-", "n"]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "a"]], ")"]], "2"], ")"]], RowBox[List["-", FractionBox["n", "2"]]]], "-", SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "a"]], ")"]], RowBox[List["-", "n"]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "a", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[NotEqual]", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02