|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.02.06.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ZetaClassical[s, a] == Sum[1/(a + k)^s, {k, 0, m}] -
1/((1 - s) (a + m)^(s - 1)) -
Sum[((a + k + 1)^(1 - s) - (a + k)^(1 - s))/(1 - s) - (a + k + 1)^(-s),
{k, m, Infinity}] /; Re[s] > 1 && Element[m, Integers] && m >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", "a"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], "s"]]]], "-", FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "s"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "m"]], ")"]], RowBox[List["s", "-", "1"]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "m"]], "\[Infinity]"], RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k", "+", "1"]], ")"]], RowBox[List["1", "-", "s"]]], "-", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], RowBox[List["1", "-", "s"]]]]], RowBox[List["1", "-", "s"]]], "-", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k", "+", "1"]], ")"]], RowBox[List["-", "s"]]]]], ")"]]]]]]]], "/;", " ", RowBox[List[RowBox[List[RowBox[List["Re", "[", "s", "]"]], ">", "1"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mover> <mi> ζ </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[OverscriptBox["\[Zeta]", "^"], "(", RowBox[List[TagBox["s", Rule[Editable, True]], ",", TagBox["a", Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mi> m </mi> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> s </mi> </mrow> </msup> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> s </mi> </mrow> </mfrac> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> </mfrac> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> s </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Zeta </ci> <ci> s </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <ci> m </ci> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> m </ci> </apply> <apply> <plus /> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <real /> <ci> s </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <in /> <ci> m </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ZetaClassical", "[", RowBox[List["s_", ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], "s"]]]], "-", FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "s"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "m"]], ")"]], RowBox[List["s", "-", "1"]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "m"]], "\[Infinity]"], RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k", "+", "1"]], ")"]], RowBox[List["1", "-", "s"]]], "-", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], RowBox[List["1", "-", "s"]]]]], RowBox[List["1", "-", "s"]]], "-", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k", "+", "1"]], ")"]], RowBox[List["-", "s"]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", "s", "]"]], ">", "1"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|