|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/10.02.27.0007.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
Zeta[s, a] == Zeta[s, Ceiling[-Re[a]] + a] + Zeta[s, -a - Floor[-Re[a]]] -
ZetaClassical[s, -a + 1] - KroneckerDelta[FractionalPart[-Re[a]]]/
(-Im[a]^2)^(s/2) /; Inequality[-(Pi/2), Less, Arg[1 - a], LessEqual,
Pi/2] && !Element[a, Reals]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Zeta", "[", RowBox[List["s", ",", "a"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["Zeta", "[", RowBox[List["s", ",", RowBox[List[RowBox[List["Ceiling", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", "a"]]]], "]"]], "+", RowBox[List["Zeta", "[", RowBox[List["s", ",", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]]]]]], "]"]], "-", RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", RowBox[List[RowBox[List["-", "a"]], "+", "1"]]]], "]"]], "-", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["FractionalPart", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "a", "]"]], "2"]]], ")"]], RowBox[List["-", FractionBox["s", "2"]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["\[Pi]", "2"]]], "<", RowBox[List["Arg", "[", RowBox[List["1", "-", "a"]], "]"]], "\[LessEqual]", FractionBox["\[Pi]", "2"]]], "\[And]", RowBox[List["Not", "[", RowBox[List["a", "\[Element]", "Reals"]], "]"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["s", Zeta, Rule[Editable, True]], ",", TagBox["a", Zeta, Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$], Zeta[ZetaDump`e1$, ZetaDump`e2$]]]] </annotation> </semantics> <mo>  </mo> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mo> ⌈ </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⌉ </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["s", Zeta, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", RowBox[List["\[LeftCeiling]", RowBox[List["-", RowBox[List["Re", "(", "a", ")"]]]], "\[RightCeiling]"]]]], Zeta, Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$], Zeta[ZetaDump`e1$, ZetaDump`e2$]]]] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mo> ⌊ </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⌋ </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["s", Zeta, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["\[LeftFloor]", RowBox[List["-", RowBox[List["Re", "(", "a", ")"]]]], "\[RightFloor]"]]]], Zeta, Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$], Zeta[ZetaDump`e1$, ZetaDump`e2$]]]] </annotation> </semantics> <mo> - </mo> <mrow> <mover> <mi> ζ </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> frac </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </msub> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> s </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> < </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ≤ </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <mi> a </mi> <mo> ∉ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Zeta </ci> <ci> s </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <ci> Zeta </ci> <ci> s </ci> <apply> <plus /> <ci> a </ci> <apply> <ceiling /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Zeta </ci> <ci> s </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <apply> <ci> OverHat </ci> <ci> ζ </ci> </apply> <ci> s </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <apply> <ci> FractionalPart </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <imaginary /> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> s </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Inequality </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <lt /> <apply> <arg /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <leq /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <notin /> <ci> a </ci> <reals /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Zeta", "[", RowBox[List["s_", ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Zeta", "[", RowBox[List["s", ",", RowBox[List[RowBox[List["Ceiling", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", "a"]]]], "]"]], "+", RowBox[List["Zeta", "[", RowBox[List["s", ",", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]]]]]], "]"]], "-", RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", RowBox[List[RowBox[List["-", "a"]], "+", "1"]]]], "]"]], "-", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["FractionalPart", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox[RowBox[List["Im", "[", "a", "]"]], "2"]]], ")"]], RowBox[List["-", FractionBox["s", "2"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["\[Pi]", "2"]]], "<", RowBox[List["Arg", "[", RowBox[List["1", "-", "a"]], "]"]], "\[LessEqual]", FractionBox["\[Pi]", "2"]]], "&&", RowBox[List["!", RowBox[List["a", "\[Element]", "Reals"]]]]]]]]]]]] |
| 
| 
| 
| 
|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| | 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |