|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/10.02.27.0008.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
ZetaClassical[s, a] ==
Zeta[s, a]/E^(UnitStep[Floor[-Re[a]]] (2 UnitStep[Im[a]] - 1) Pi I s) +
UnitStep[Floor[-Re[a]]] (1 - E^((-(2 UnitStep[Im[a]] - 1)) Pi I s))
((UnitStep[Im[a]] (1 + Floor[-Re[a]] + Floor[Re[a]]))/
((Floor[-Re[a]] + a)^2)^(s/2) + Zeta[s, a + Floor[-Re[a]] + 1])
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", "a"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["Zeta", "[", RowBox[List["s", ",", "a"]], "]"]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["UnitStep", "[", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "]"]]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Im", "[", "a", "]"]], "]"]]]], "-", "1"]], ")"]], " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "s"]]]]], "+", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Im", "[", "a", "]"]], "]"]]]], "-", "1"]], ")"]]]], " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "s"]]]]], ")"]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["Im", "[", "a", "]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List["Re", "[", "a", "]"]], "]"]]]], ")"]]]], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", "a"]], ")"]], "2"], ")"]], RowBox[List["s", "/", "2"]]]], "+", RowBox[List["Zeta", "[", RowBox[List["s", ",", RowBox[List["a", "+", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", "1"]]]], "]"]]]], ")"]]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mover> <mi> ζ </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["s", Zeta, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["a", Zeta, Rule[Editable, True], Rule[Selectable, True]]]], ")"]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$], Zeta[ZetaDump`e1$, ZetaDump`e2$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mrow> <semantics> <mi> θ </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mo> ⌊ </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⌋ </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> θ </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <semantics> <mi> θ </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mo> ⌊ </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⌋ </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> θ </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <semantics> <mi> θ </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ⌊ </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mrow> <mo> ⌊ </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mo> ⌊ </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⌋ </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mi> s </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> + </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mo> ⌊ </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["s", Zeta, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["a", "+", RowBox[List["\[LeftFloor]", RowBox[List["-", RowBox[List["Re", "(", "a", ")"]]]], "\[RightFloor]"]], "+", "1"]], Zeta, Rule[Editable, True], Rule[Selectable, True]]]], ")"]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$], Zeta[ZetaDump`e1$, ZetaDump`e2$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <ci> OverHat </ci> <ci> ζ </ci> </apply> <ci> s </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Zeta </ci> <ci> s </ci> <ci> a </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> UnitStep </ci> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <imaginary /> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <pi /> <imaginaryi /> <ci> s </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ci> UnitStep </ci> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <imaginary /> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <pi /> <imaginaryi /> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> UnitStep </ci> <apply> <imaginary /> <ci> a </ci> </apply> </apply> <apply> <plus /> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> <apply> <floor /> <apply> <real /> <ci> a </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> s </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Zeta </ci> <ci> s </ci> <apply> <plus /> <ci> a </ci> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ZetaClassical", "[", RowBox[List["s_", ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Zeta", "[", RowBox[List["s", ",", "a"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["UnitStep", "[", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "]"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Im", "[", "a", "]"]], "]"]]]], "-", "1"]], ")"]], " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "s"]]]]], "+", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Im", "[", "a", "]"]], "]"]]]], "-", "1"]], ")"]]]], " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "s"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["Im", "[", "a", "]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List["Re", "[", "a", "]"]], "]"]]]], ")"]]]], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", "a"]], ")"]], "2"], ")"]], RowBox[List["s", "/", "2"]]]], "+", RowBox[List["Zeta", "[", RowBox[List["s", ",", RowBox[List["a", "+", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", "1"]]]], "]"]]]], ")"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |