Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselY






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselY[nu,z] > Series representations > Generalized power series > Expansions at z==0 > For the function itself > Logarithmic cases





http://functions.wolfram.com/03.03.06.0039.01









  


  










Input Form





BesselY[2, z] \[Proportional] (z^2/(4 Pi)) Log[z/2] (1 - z^2/12 + z^4/384 + \[Ellipsis]) - (4/(Pi z^2)) (1 + z^2/4) - (1/(8 Pi)) z^2 (3/2 - 2 EulerGamma - (1/12) (17/6 - 2 EulerGamma) z^2 + (1/384) (43/12 - 2 EulerGamma) z^4 + \[Ellipsis]) /; (z -> 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BesselY", "[", RowBox[List["2", ",", "z"]], "]"]], "\[Proportional]", " ", RowBox[List[RowBox[List[FractionBox[SuperscriptBox["z", "2"], RowBox[List["4", " ", "\[Pi]"]]], " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]], RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "2"], "12"], "+", FractionBox[SuperscriptBox["z", "4"], "384"], "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[FractionBox["4", RowBox[List["\[Pi]", " ", SuperscriptBox["z", "2"]]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", "2"], "4"]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["8", " ", "\[Pi]"]]], SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[FractionBox["3", "2"], "-", RowBox[List["2", " ", "EulerGamma"]], "-", RowBox[List[FractionBox["1", "12"], " ", RowBox[List["(", RowBox[List[FractionBox["17", "6"], "-", RowBox[List["2", " ", "EulerGamma"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[FractionBox["1", "384"], " ", RowBox[List["(", RowBox[List[FractionBox["43", "12"], "-", RowBox[List["2", " ", "EulerGamma"]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> Y </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[EulerGamma]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 12 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 17 </mn> <mn> 6 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[EulerGamma]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 384 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 43 </mn> <mn> 12 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[EulerGamma]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mfrac> <mn> 4 </mn> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 12 </mn> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 384 </mn> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> BesselY </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 12 </cn> <apply> <plus /> <cn type='rational'> 17 <sep /> 6 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 384 </cn> <apply> <plus /> <cn type='rational'> 43 <sep /> 12 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 12 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 384 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselY", "[", RowBox[List["2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "2"], "12"], "+", FractionBox[SuperscriptBox["z", "4"], "384"], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["4", " ", "\[Pi]"]]], "-", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", "2"], "4"]]], ")"]]]], RowBox[List["\[Pi]", " ", SuperscriptBox["z", "2"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[FractionBox["3", "2"], "-", RowBox[List["2", " ", "EulerGamma"]], "-", RowBox[List[FractionBox["1", "12"], " ", RowBox[List["(", RowBox[List[FractionBox["17", "6"], "-", RowBox[List["2", " ", "EulerGamma"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[FractionBox["1", "384"], " ", RowBox[List["(", RowBox[List[FractionBox["43", "12"], "-", RowBox[List["2", " ", "EulerGamma"]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["8", " ", "\[Pi]"]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02