|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.04.06.0035.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BesselK[2, z] \[Proportional] 2/z^2 - 1/2 - (z^2/8) Log[z/2]
(1 + z^2/12 + z^4/384 + \[Ellipsis]) +
(z^2/16) (3/2 - 2 EulerGamma + (1/12) (17/6 - 2 EulerGamma) z^2 +
(1/384) (43/12 - 2 EulerGamma) z^4 + \[Ellipsis]) /; (z -> 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BesselK", "[", RowBox[List["2", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox["2", SuperscriptBox["z", "2"]], "-", FractionBox["1", "2"], "-", RowBox[List[FractionBox[SuperscriptBox["z", "2"], "8"], " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]], RowBox[List["(", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", "2"], "12"], "+", FractionBox[SuperscriptBox["z", "4"], "384"], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox[SuperscriptBox["z", "2"], "16"], " ", RowBox[List["(", RowBox[List[FractionBox["3", "2"], "-", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List[FractionBox["1", "12"], " ", RowBox[List["(", RowBox[List[FractionBox["17", "6"], "-", RowBox[List["2", " ", "EulerGamma"]]]], ")"]], SuperscriptBox["z", "2"]]], "+", RowBox[List[FractionBox["1", "384"], RowBox[List["(", RowBox[List[FractionBox["43", "12"], "-", RowBox[List["2", " ", "EulerGamma"]]]], ")"]], SuperscriptBox["z", "4"]]], "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> K </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mfrac> <mn> 2 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mtext> </mtext> </mrow> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 12 </mn> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 384 </mn> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 16 </mn> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 12 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 17 </mn> <mn> 6 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 384 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 43 </mn> <mn> 12 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> BesselK </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 12 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 384 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 16 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 12 </cn> <apply> <plus /> <cn type='rational'> 17 <sep /> 6 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 384 </cn> <apply> <plus /> <cn type='rational'> 43 <sep /> 12 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselK", "[", RowBox[List["2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["2", SuperscriptBox["z", "2"]], "-", FractionBox["1", "2"], "-", RowBox[List[FractionBox["1", "8"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", "2"], "12"], "+", FractionBox[SuperscriptBox["z", "4"], "384"], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox["1", "16"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[FractionBox["3", "2"], "-", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List[FractionBox["1", "12"], " ", RowBox[List["(", RowBox[List[FractionBox["17", "6"], "-", RowBox[List["2", " ", "EulerGamma"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[FractionBox["1", "384"], " ", RowBox[List["(", RowBox[List[FractionBox["43", "12"], "-", RowBox[List["2", " ", "EulerGamma"]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|