Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselK






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselK[nu,z] > Differential equations > Ordinary linear differential equations and wronskians > Involving related functions





http://functions.wolfram.com/03.04.13.0018.01









  


  










Input Form





z^3 Derivative[3][w][z] - z (4 z^2 + 4 \[Nu]^2 - 1) Derivative[1][w][z] + (4 \[Nu]^2 - 1) w[z] == 0 /; w[z] == Subscript[c, 1] z BesselI[\[Nu], z]^2 + Subscript[c, 2] z BesselI[\[Nu], z] BesselK[\[Nu], z] + Subscript[c, 3] z BesselK[\[Nu], z]^2










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["z", "3"], RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]], "-", "1"]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], "z", " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "2"]]], " ", "+", RowBox[List[SubscriptBox["c", "2"], "z", " ", RowBox[List["BesselI", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], " ", RowBox[List["BesselK", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "3"], "z", " ", SuperscriptBox[RowBox[List["BesselK", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "2"]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;3&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mtext> </mtext> <msup> <mrow> <msub> <mi> I </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msub> <mi> K </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <msub> <mi> c </mi> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> K </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <ci> BesselI </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> <apply> <ci> BesselK </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <ci> BesselI </ci> <ci> &#957; </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <ci> BesselK </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["z_", "3"], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List["z_", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["z_", "2"]]], "+", RowBox[List["4", " ", SuperscriptBox["\[Nu]_", "2"]]], "-", "1"]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["\[Nu]_", "2"]]], "-", "1"]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", "z", " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "2"]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", "z", " ", RowBox[List["BesselI", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], " ", RowBox[List["BesselK", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "3"], " ", "z", " ", SuperscriptBox[RowBox[List["BesselK", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "2"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29