|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.03.06.0047.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BesselY[n, z] == Subscript[F, Infinity][z, n] /;
(Subscript[F, m][z, n] == (2/Pi) Log[z/2] BesselJ[n, z] -
(1/Pi) Sum[((n - k - 1)!/k!) (z/2)^(2 k - n), {k, 0, n - 1}] -
(1/Pi) (z/2)^n Sum[(((-1)^k (PolyGamma[k + 1] + PolyGamma[k + n + 1]))/
(k! (k + n)!)) (z/2)^(2 k), {k, 0, m}] ==
BesselY[n, z] - (((-1)^m 2^(-2 m - n - 1) z^(2 + n + 2 m))/
(Pi (m + 1)! (m + n + 1)!)) Log[z/2] HypergeometricPFQ[{1},
{2 + m, 2 + m + n}, -(z^2/4)] -
(-1)^n MeijerG[{{n/2 + m + 1, n/2 + m + 1}, {-((n + 1)/2)}},
{{n/2 + m + 1, n/2 + m + 1}, {n/2, -(n/2), -((n + 1)/2)}}, z^2/4] &&
Element[n, Integers] && n >= 0) && Element[m, Integers] && m >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BesselY", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Equal]", RowBox[List[SubscriptBox["F", "\[Infinity]"], "[", RowBox[List["z", ",", "n"]], "]"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["F", "m"], "[", RowBox[List["z", ",", "n"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["2", "\[Pi]"], " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]], RowBox[List["BesselJ", "[", RowBox[List["n", ",", "z"]], "]"]]]], "-", RowBox[List[FractionBox["1", "\[Pi]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k", "-", "1"]], ")"]], "!"]], " "]], RowBox[List["k", "!"]]], SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List[RowBox[List["2", " ", "k"]], "-", "n"]]]]]]]]], "-", RowBox[List[FractionBox["1", "\[Pi]"], SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], "n"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "n", "+", "1"]], "]"]]]], ")"]], " "]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "n"]], ")"]], "!"]]]]], SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["2", " ", "k"]]]]]]]]]]], "\[Equal]", RowBox[List[RowBox[List["BesselY", "[", RowBox[List["n", ",", "z"]], "]"]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], SuperscriptBox["2", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "m"]], "-", "n", "-", "1"]]], " ", SuperscriptBox["z", RowBox[List["2", "+", "n", "+", RowBox[List["2", "m"]]]]], " "]], RowBox[List["\[Pi]", RowBox[List[RowBox[List["(", RowBox[List["m", "+", "1"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["m", "+", "n", "+", "1"]], ")"]], "!"]]]]], " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "m"]], ",", RowBox[List["2", "+", "m", "+", "n"]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["n", "2"], "+", "m", "+", "1"]], ",", RowBox[List[FractionBox["n", "2"], "+", "m", "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List["-", FractionBox[RowBox[List["n", "+", "1"]], "2"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["n", "2"], "+", "m", "+", "1"]], ",", RowBox[List[FractionBox["n", "2"], "+", "m", "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["n", "2"], ",", RowBox[List["-", FractionBox["n", "2"]]], ",", RowBox[List["-", FractionBox[RowBox[List["n", "+", "1"]], "2"]]]]], "}"]]]], "}"]], ",", FractionBox[SuperscriptBox["z", "2"], "4"]]], "]"]]]]]]]], StyleBox[")", Rule[FontWeight, "Plain"]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]], ")"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> Y </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <msub> <mi> F </mi> <mi> ∞ </mi> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> F </mi> <mi> m </mi> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mn> 2 </mn> <mi> π </mi> </mfrac> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> π </mi> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> π </mi> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <msub> <mi> Y </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mrow> <mrow> <mi> m </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["m", "+", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["m", "+", "n", "+", "2"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 5 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mi> m </mi> <mo> + </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> m </mi> <mo> + </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mi> m </mi> <mo> + </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> m </mi> <mo> + </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["3", ",", "5"]], RowBox[List["2", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[FractionBox[SuperscriptBox["z", "2"], "4"], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["m", "+", FractionBox["n", "2"], "+", "1"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["m", "+", FractionBox["n", "2"], "+", "1"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[RowBox[List["m", "+", FractionBox["n", "2"], "+", "1"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["m", "+", FractionBox["n", "2"], "+", "1"]], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["n", "2"], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["-", FractionBox["n", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> BesselY </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <apply> <ci> Subscript </ci> <ci> F </ci> <infinity /> </apply> <ci> z </ci> <ci> n </ci> </apply> </apply> <apply> <and /> <apply> <and /> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> F </ci> <ci> m </ci> </apply> <ci> z </ci> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> BesselJ </ci> <ci> n </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <ln /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> BesselY </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <factorial /> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> </list> <list> <apply> <plus /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <ci> m </ci> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </list> </list> <list> <list> <apply> <plus /> <ci> m </ci> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </list> </list> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <ci> m </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselY", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SubscriptBox["F", "\[Infinity]"], "[", RowBox[List["z", ",", "n"]], "]"]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["F", "m"], "[", RowBox[List["z", ",", "n"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List["n", ",", "z"]], "]"]]]], "\[Pi]"], "-", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List[RowBox[List["2", " ", "k"]], "-", "n"]]]]], RowBox[List["k", "!"]]]]], "\[Pi]"], "-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], "n"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "n", "+", "1"]], "]"]]]], ")"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["2", " ", "k"]]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "n"]], ")"]], "!"]]]]]]]]], "\[Pi]"]]], "\[Equal]", RowBox[List[RowBox[List["BesselY", "[", RowBox[List["n", ",", "z"]], "]"]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "m"]], "-", "n", "-", "1"]]], " ", SuperscriptBox["z", RowBox[List["2", "+", "n", "+", RowBox[List["2", " ", "m"]]]]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "m"]], ",", RowBox[List["2", "+", "m", "+", "n"]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]]], "]"]]]], RowBox[List["\[Pi]", " ", RowBox[List[RowBox[List["(", RowBox[List["m", "+", "1"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["m", "+", "n", "+", "1"]], ")"]], "!"]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["n", "2"], "+", "m", "+", "1"]], ",", RowBox[List[FractionBox["n", "2"], "+", "m", "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["n", "2"], "+", "m", "+", "1"]], ",", RowBox[List[FractionBox["n", "2"], "+", "m", "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["n", "2"], ",", RowBox[List["-", FractionBox["n", "2"]]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]]]]]], "}"]]]], "}"]], ",", FractionBox[SuperscriptBox["z", "2"], "4"]]], "]"]]]]]]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]], ")"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|